In today's complex healthcare landscape, exacerbated by resource constraints at various levels, optimization of health professionals' roles is becoming increasingly paramount. Interprofessional collaboration, underpinned by role recognition and teamwork, leads to improved patient and organizational outcomes. Hospital pharmacists play a pivotal role in multidisciplinary teams, and it is imperative to understand multidisciplinary viewpoints on hospital pharmacists' roles to guide role prioritization and organizational efficiency.
View Article and Find Full Text PDFBackground: In the human large bowel, sacral parasympathetic nerves arise from S2 to S4, project to the pelvic plexus ("hypogastric plexus") and have post-ganglionic axons entering the large bowel near the rectosigmoid junction. They then run long distances orally or aborally within the bowel wall forming "ascending nerves" or "shunt fascicles" running in the plane of the myenteric plexus. They form bundles of nerve fibres that can be distinguished from the myenteric plexus by their straight orientation, tendency not to merge with myenteric ganglia and greater width.
View Article and Find Full Text PDFBackground: Admission to hospital introduces risks for people with Parkinson's disease in maintaining continuity of their highly individualized medication regimens, which increases their risk of medication errors. This is of particular concern as omitted medications and irregular dosing can cause an immediate increase in an individual's symptoms as well as other adverse outcomes such as swallowing difficulties, aspiration pneumonia, frozen gait and even potentially fatal neuroleptic malignant type syndrome.
Objective: To determine the occurrence and identify factors that contribute to Parkinson's medication errors in Australian hospitals.
Current treatments for Parkinson's disease (PD) provide only symptomatic relief, with no disease-modifying therapies identified to date. Repurposing FDA-approved drugs to treat PD could significantly shorten the time needed for and reduce the costs of drug development compared with conventional approaches. We developed an efficient strategy to screen for modulators of β-glucocerebrosidase (GCase), a lysosomal enzyme that exhibits decreased activity in patients with PD, leading to accumulation of the substrate glucosylceramide and oxidized dopamine and α-synuclein, which contribute to PD pathogenesis.
View Article and Find Full Text PDFAutophagic dysregulation and lysosomal impairment have been implicated in the pathogenesis of Parkinson's disease, partly due to the identification of mutations in multiple genes involved in these pathways such as GBA, SNCA, ATP13a2 (also known as PARK9), TMEM175 and LRRK2. Mutations resulting in lysosomal dysfunction are proposed to contribute to Parkinson's disease by increasing α-synuclein levels, that in turn may promote aggregation of this protein. Here, we used two different genetic models-one heterozygous for a mutated form of the GBA protein (D409V), and the other heterozygous for an ATP13a2 loss-of-function mutation, to test whether these mutations exacerbate the spread of α-synuclein pathology following injection of α-synuclein preformed fibrils in the olfactory bulb of 12-week-old mice.
View Article and Find Full Text PDFHyposmia is evident in over 90% of Parkinson's disease (PD) patients. A characteristic of PD is intraneuronal deposits composed in part of α-synuclein fibrils. Based on the analysis of post-mortem PD patients, Braak and colleagues suggested that early in the disease α-synuclein pathology is present in the dorsal motor nucleus of the vagus, as well as the olfactory bulb and anterior olfactory nucleus, and then later affects other interconnected brain regions.
View Article and Find Full Text PDFLoss of dopaminergic neurons in the substantia nigra (SN) is one of the pathological hallmarks in Parkinson's disease (PD). This neuron loss is accompanied by reduced protein and activity levels of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine synthesis. Reduced nigral brain-derived neurotrophic factor (BDNF) has been postulated to contribute to the loss of nigral dopaminergic neurons in PD by causing a lack of trophic support.
View Article and Find Full Text PDFWe hypothesize that Parkinson's disease (PD) pathogenesis can be divided into three temporal phases. During the first phase, 'triggers', such as viral infections or environmental toxins, spark the disease process in the brain and/or peripheral tissues. Triggers alone, however, may be insufficient, requiring 'facilitators' like peripheral inflammation for PD pathology to develop.
View Article and Find Full Text PDFWhile people are often aware of the motor symptoms in Parkinson's disease (PD), few know of the many non-motor symptoms, which patients report have a greater impact on their quality of life. Gastrointestinal (GI) dysfunction is one of the most common non-motor symptoms, which can occur at any stage of PD, even years prior to diagnosis, and can affect all sections along the GI tract causing a range of symptoms including drooling, gastroparesis and constipation. We have investigated whether a neurotoxin model of PD induced by rotenone, a mitochondrial complex I inhibitor, is capable of reproducing the GI dysfunction seen clinically.
View Article and Find Full Text PDFIn this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5-9 to 2-3 mmol/L); however, plasma adrenaline concentration was increased 20-30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg.
View Article and Find Full Text PDFTyrosine hydroxylase (TH, the rate limiting-enzyme in catecholamine synthesis) is regulated acutely via phosphorylation of 3 serine residues--Ser19, 31 and 40, and chronically via changes in TH protein levels. In this study, we aimed to investigate how TH is regulated in the brain, gut and adrenal gland as well as changes in mature brain-derived neurotrophic factor (mBDNF) and proBDNF levels in a low-dose (2 mg/kg, 5 days/week for 4 weeks) rotenone model of Parkinson's disease (PD). Rearing behaviour decreased by week 3 in the rotenone group (p<0.
View Article and Find Full Text PDFParkinson's disease (PD) is the second most common neurodegenerative disorder that is characterized by two major neuropathological hallmarks: the degeneration of dopaminergic neurons in the substantia nigra (SN) and the presence of Lewy bodies in the surviving SN neurons, as well as other regions of the central and peripheral nervous system. Animal models have been invaluable tools for investigating the underlying mechanisms of the pathogenesis of PD and testing new potential symptomatic, neuroprotective and neurorestorative therapies. However, the usefulness of these models is dependent on how precisely they replicate the features of clinical PD with some studies now employing combined gene-environment models to replicate more of the affected pathways.
View Article and Find Full Text PDF