Many viruses are pleomorphic in shape and size, with pleomorphism often thought to correlate with infectivity, pathogenicity, or virus survival. For example, influenza and respiratory syncytial virus particles range in size from small spherical virions to filaments reaching many micrometers in length. We have used a pressure vessel model to investigate how the length and width of spherical and filamentous virions can vary for a given critical stress and fluorescence super-resolution microscopy along with image analysis tools to fit imaged influenza viruses to the model.
View Article and Find Full Text PDFProductive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes.
View Article and Find Full Text PDFProductive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they.
View Article and Find Full Text PDFBackground: Hyperthermia is a well-accepted cancer therapy. Microwaves provide a very precise, targeted means of hyperthermia and are currently used to treat plantar warts caused by cutaneous-infective human papillomaviruses (HPVs). Other HPV genotypes infecting the anogenital mucosa cause genital warts or preneoplastic lesions or cervical cancer.
View Article and Find Full Text PDFHuman respiratory syncytial virus (RSV) causes severe respiratory illness in children and the elderly. Here, using cryogenic electron microscopy and tomography combined with computational image analysis and three-dimensional reconstruction, we show that there is extensive helical ordering of the envelope-associated proteins and glycoproteins of RSV filamentous virions. We calculated a 16 Å resolution sub-tomogram average of the matrix protein (M) layer that forms an endoskeleton below the viral envelope.
View Article and Find Full Text PDFVesivirus 2117 is an adventitious agent that has been responsible for lost productivity in biopharmaceutical production following contamination of Chinese hamster ovary cell cultures in commercial bioreactors. A member of the , 2117 is classified within the Vesivirus genus in a clade that includes canine and mink caliciviruses but is distinct from the vesicular exanthema of swine virus (VESV) clade, which includes the extensively studied feline calicivirus (FCV). We have used cryogenic electron microscopy (cryo-EM) to determine the structure of the capsid of this small, icosahedral, positive-sense-RNA-containing virus.
View Article and Find Full Text PDFTo initiate infection, many viruses enter their host cells by triggering endocytosis following receptor engagement. However, the mechanisms by which non-enveloped viruses escape the endosome are poorly understood. Here we present near-atomic-resolution cryo-electron microscopy structures for feline calicivirus both undecorated and labelled with a soluble fragment of its cellular receptor, feline junctional adhesion molecule A.
View Article and Find Full Text PDFVesivirus 2117 is an adventitious agent that, in 2009, was identified as a contaminant of Chinese hamster ovary cells propagated in bioreactors at a pharmaceutical manufacturing plant belonging to Genzyme. The consequent interruption in supply of Fabrazyme and Cerezyme (drugs used to treat Fabry and Gaucher diseases, respectively) caused significant economic losses. Vesivirus 2117 is a member of the Caliciviridae, a family of small icosahedral viruses encoding a positive-sense RNA genome.
View Article and Find Full Text PDF