Publications by authors named "Michaela Clever"

Many metabolic enzymes are evolutionarily highly conserved and serve a central function in the catabolism and anabolism of cells. The serine hydroxymethyl transferase (SHMT) catalyzing the conversion of serine and glycine and vice versa feeds into tetrahydrofolate (THF)-mediated C1 metabolism. We identified a mutation in (CG3011) in a screen for blastoderm mutants.

View Article and Find Full Text PDF

Lamin B receptor (LBR), an inner nuclear membrane (INM) protein, contributes to the functional integrity of the nucleus by tethering heterochromatin to the nuclear envelope. We have previously reported that the depletion of embryonic large molecule derived from yolk sac (ELYS; also known as AHCTF1), a component of the nuclear pore complex, from cells perturbs the localization of LBR to the INM, but little is known about the underlying molecular mechanism. In this study, we found that the depletion of ELYS promoted LBR phosphorylation at the residues known to be phosphorylated by cyclin-dependent kinase (CDK) and serine/arginine protein kinases 1 and 2 (SRPK1 and SRPK2, respectively).

View Article and Find Full Text PDF

We demonstrate how a conventional confocal spinning-disk (CSD) microscope can be converted into a doubly resolving image scanning microscopy (ISM) system without changing any part of its optical or mechanical elements. Making use of the intrinsic properties of a CSD microscope, we illuminate stroboscopically, generating an array of excitation foci that are moved across the sample by varying the phase between stroboscopic excitation and rotation of the spinning disk. ISM then generates an image with nearly doubled resolution.

View Article and Find Full Text PDF

In metazoans with "open" mitosis, cells undergo structural changes involving the complete disassembly of the nuclear envelope (NE). In post-mitosis, the dividing cell faces the difficulty to reassemble NE structures in a highly regulated fashion around separated chromosomes. The de novo formation of nuclear pore complexes (NPCs), which are gateways between the cytoplasm and nucleoplasm across the nuclear membrane, is an archetype of macromolecular assembly and is therefore of special interest.

View Article and Find Full Text PDF

In open mitosis the nuclear envelope (NE) reassembles at the end of each mitosis. This process involves the reformation of the nuclear pore complex (NPC), the inner and outer nuclear membranes, and the nuclear lamina. In human cells cell cycle-dependent NE subdomains exist, characterized as A-type lamin-rich/NPC-free or B-type lamin-rich/NPC-rich, which are initially formed as core or noncore regions on mitotic chromosomes, respectively.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is a large protein assembly that mediates molecular trafficking between the cytoplasm and the nucleus. NPCs assemble twice during the cell cycle in metazoans: postmitosis and during interphase. In this study, using small interfering RNA (siRNA) in conjunction with a cell fusion-based NPC assembly assay, we demonstrated that pore membrane protein (Pom)121, a vertebrate-specific integral membrane nucleoporin, is indispensable for an early step in interphase NPC assembly.

View Article and Find Full Text PDF