Publications by authors named "Michaela Auer-Grumbach"

Variant transthyretin amyloidosis cardiomyopathy (ATTRv-CM) is a rare form of cardiac amyloidosis associated with many possible mutations in the transthyretin gene, presenting as various distinct clinical phenotypes. Among these, the His108Arg mutation is the most prevalent TTR variant in Austria. However, data describing its clinical phenotype are lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSAN) are rare disorders affecting sensory and autonomic neurons, making them hard to study due to limited data.
  • A large international study identified 80 new pathogenic variants in 73 families across known CIP/HSAN-related genes, expanding knowledge on these diseases.
  • Advanced methodologies like in silico predictions and metabolic tests improved variant classification, crucial for guiding future gene-specific treatments in clinical trials.
View Article and Find Full Text PDF

Novel ribonucleic acid interference (RNAi) therapeutics such as patisiran and inotersen have been shown to benefit neurologic disease course and quality of life in patients with hereditary transthyretin amyloidosis (ATTRv). We aimed to determine the impact of RNAi therapeutics on myocardial amyloid load using quantitative single photon emission computed tomography/computed tomography (SPECT/CT) imaging in patients with ATTRv-related cardiomyopathy (ATTRv-CM). We furthermore compared them with wild-type ATTR-CM (ATTRwt-CM) patients treated with tafamidis.

View Article and Find Full Text PDF

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks.

View Article and Find Full Text PDF

Aims: We tested the hypothesis that artificial intelligence (AI)-powered algorithms applied to cardiac magnetic resonance (CMR) images could be able to detect the potential patterns of cardiac amyloidosis (CA). Readers in CMR centers with a low volume of referrals for the detection of myocardial storage diseases or a low volume of CMRs, in general, may overlook CA. In light of the growing prevalence of the disease and emerging therapeutic options, there is an urgent need to avoid misdiagnoses.

View Article and Find Full Text PDF
Article Synopsis
  • Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is an iron-containing non-heme oxygenase linked to various neurological disorders in 34 individuals from 25 families with biallelic HPDL variants.
  • These neurological disorders presented as conditions ranging from juvenile-onset spastic paraplegia to infantile-onset spasticity, often accompanied by severe developmental delays and respiratory issues.
  • Experiments showed that HPDL is expressed in the nervous system, plays a role in motor function in zebrafish models, and its variants disrupt enzymatic function, suggesting a causative link between HPDL mutations and neurological diseases.
View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic has raised concerns for patients with chronic diseases, particularly those with preexisting conditions that may worsen COVID-19 outcomes, like ATTR amyloidosis.
  • ATTR amyloidosis leads to the buildup of amyloid fibrils in various organs, causing issues like heart problems and nerve damage, making patients with this condition especially vulnerable to complications during COVID-19.
  • There is a need for further research on the risk and management of COVID-19 in ATTR amyloidosis patients, as they may require special care due to their increased risk of severe outcomes.
View Article and Find Full Text PDF

The prevalence and significance of cardiac amyloidosis have been considerably underestimated in the past; however, the number of patients diagnosed with cardiac amyloidosis has increased significantly recently due to growing awareness of the disease, improved diagnostic capabilities and demographic trends. Specific therapies that improve patient prognosis have become available for certain types of cardiac amyloidosis. Thus, the earliest possible referral of patients with suspicion of cardiac amyloidosis to an experienced center is crucial to ensure rapid diagnosis, early initiation of treatment, and structured patient care.

View Article and Find Full Text PDF

Objective: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years.

Methods: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and single-gene sequencing (n = 104). We further queried WES repositories for variants and measured blood levels of the -encoded protein neprilysin.

View Article and Find Full Text PDF

Background: Hereditary transthyretin amyloidosis (hATTR) is an autosomal dominantly inherited disorder caused by an accumulation of amyloid fibrils in tissues due to mutations in the transthyretin () gene. The prevalence of hATTR is still unclear and likely underestimated in many countries. In order to apply new therapies in a targeted manner, early diagnosis and knowledge of phenotype-genotype correlations are mandatory.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis is caused by pathogenic variants (ATTR) in the TTR gene. Alongside cardiac dysfunction, the disease typically manifests with a severely progressive sensorimotor and autonomic polyneuropathy. Three different drugs, tafamidis, patisiran, and inotersen, are approved in several countries, including the European Union and the United States of America.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that changes in the SORD gene are the most common cause of a type of nerve problem that runs in families.
  • They discovered that people with these changes have too much sorbitol and not enough SORD protein, which can lead to issues with their nerves.
  • They also found that giving certain medications can help reduce sorbitol levels and improve nerve and movement problems in patients and in fruit flies used for research.
View Article and Find Full Text PDF

The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum.

View Article and Find Full Text PDF

Charcot-Marie-Tooth (CMT) disease is a form of inherited peripheral neuropathy that affects motor and sensory neurons. To identify the causative gene in a consanguineous family with autosomal recessive CMT (AR-CMT), we employed a combination of linkage analysis and whole exome sequencing. After excluding known AR-CMT genes, genome-wide linkage analysis mapped the disease locus to a 7.

View Article and Find Full Text PDF

Patients with the neurological disorder HSAN-I suffer frequent infections, attributed to a lack of pain sensation and failure to seek care for minor injuries. Whether protective CD8 T cells are affected in HSAN-I patients remains unknown. Here, we report that HSAN-I-associated mutations in serine palmitoyltransferase subunit SPTLC2 dampened human T cell responses.

View Article and Find Full Text PDF

HSPB1 (heat shock protein family B [small] member 1) is a ubiquitously expressed molecular chaperone. Most mutations in HSPB1 cause axonal Charcot-Marie-Tooth neuropathy and/or distal hereditary motor neuropathy. In this study we show that mutations in HSPB1 lead to impairment of macroautophagic/autophagic flux.

View Article and Find Full Text PDF

TTR amyloidosis (ATTR) is a fatal condition caused by extracellular deposits of misfolded transthyretin. Patients often present with cardiac disease, but manifestations may also involve other organs including the peripheral nervous system. ATTR is considered familial when heterozygous mutations in the TTR gene are present (ATTRmutant or ATTRm), or acquired when no TTR aberrations are detected (ATTRwildtype or ATTRwt).

View Article and Find Full Text PDF

The small heat shock protein HSPB1 (Hsp27) is an ubiquitously expressed molecular chaperone able to regulate various cellular functions like actin dynamics, oxidative stress regulation and anti-apoptosis. So far disease causing mutations in HSPB1 have been associated with neurodegenerative diseases such as distal hereditary motor neuropathy, Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Most mutations in HSPB1 target its highly conserved α-crystallin domain, while other mutations affect the C- or N-terminal regions or its promotor.

View Article and Find Full Text PDF

Tibial muscular dystrophy (TMD) is the first described human titinopathy. It is a mild adult-onset slowly progressive myopathy causing weakness and atrophy in the anterior lower leg muscles. TMD is caused by mutations in the last two exons, Mex5 and Mex6, of the titin gene (TTN).

View Article and Find Full Text PDF

Axonal polyneuropathies are a frequent cause of progressive disability in the elderly. Common etiologies comprise diabetes mellitus, paraproteinaemia, and inflammatory disorders, but often the underlying causes remain elusive. Late-onset axonal Charcot-Marie-Tooth neuropathy (CMT2) is an autosomal-dominantly inherited condition that manifests in the second half of life and is genetically largely unexplained.

View Article and Find Full Text PDF

Congenital insensitivity to pain and anhidrosis (CIPA), also known as hereditary sensory and autonomic neuropathy type IV (HSAN IV), is characterized by recurrent episodes of unexplained high fever, loss of pain perception and temperature sensation, absent sweating, repeated traumatic and thermal injuries, and mild mental retardation. After exclusion of obviously pathogenic mutations in NTRK1, the most common cause of CIPA, whole exome sequencing (WES) was carried out in a CIPA patient with unrelated parents. No mutations in known HSAN genes were identified.

View Article and Find Full Text PDF