Publications by authors named "Michaela A Scherer"

Cancer chemotherapy with methotrexate (MTX) is known to cause bone loss. However, the underlying mechanisms remain unclear. This study investigated the potential role of MTX-induced pro-inflammatory cytokines and activation of NF-κB in the associated osteoclastogenesis in rats.

View Article and Find Full Text PDF

Cancer chemotherapy often causes significant bone loss, marrow adiposity and haematopoietic defects, yet the underlying mechanisms and recovery potential remain unclear. Wnt/β-catenin signalling is integral to the regulation of osteogenesis, adipogenesis and haematopoiesis; using a rat model, the current study investigated roles of this signalling pathway in changes to bone marrow stromal and haematopoietic cell differentiation after chemotherapy with methotrexate (MTX), a commonly used antimetabolite. MTX treatment in rats (5 daily administrations at 0.

View Article and Find Full Text PDF

Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given.

View Article and Find Full Text PDF

Cancer chemotherapy disrupts the bone marrow (BM) microenvironment affecting steady-state proliferation, differentiation and maintenance of haematopoietic (HSC) and stromal stem and progenitor cells; yet the underlying mechanisms and recovery potential of chemotherapy-induced myelosuppression and bone loss remain unclear. While the CXCL12/CXCR4 chemotactic axis has been demonstrated to be critical in maintaining interactions between cells of the two lineages and progenitor cell homing to regions of need upon injury, whether it is involved in chemotherapy-induced BM damage and repair is not clear. Here, a rat model of chemotherapy treatment with the commonly used antimetabolite methotrexate (MTX) (five once-daily injections at 0.

View Article and Find Full Text PDF

Intensive use of cancer chemotherapy is increasingly linked with long-term skeletal side effects such as osteopenia, osteoporosis and fractures. However, cellular mechanisms by which chemotherapy affects bone integrity remain unclear. Methotrexate (MTX), used commonly as an anti-metabolite, is known to cause bone defects.

View Article and Find Full Text PDF

Zinc and its binding protein, metallothionein (MT), are important in regulating growth and development, and yet it is unclear how dietary Zn and MT interact in regulating bone growth. Here, 3.5-week female MT-I&II knockout (MT(-/-)) and wild type (MT(+/+)) mice were fed diets containing 2.

View Article and Find Full Text PDF

Methotrexate (MTX) is a most commonly used anti-metabolite in cancer treatment and as an anti-rheumatic drug. While MTX chemotherapy at a high dose is known to cause bone growth defects in growing bones, effects of its chronic use at a low dose on growing skeleton remain less clear. Here, we examined effects on bone growth of long-term MTX chemotherapy at a low dose in young rats, and potential protective effects of supplementary treatment with antidote folinic acid (given ip at 1 mg/kg 6 h after MTX).

View Article and Find Full Text PDF

Methotrexate (MTX) is a commonly used anti-metabolite in childhood oncology and is known to cause bone growth arrest and osteoporosis; yet the underlying mechanisms for MTX-induced bone growth defects remain largely unclear. This study characterized damaging effects in young rats of acute chemotherapy with 5 once-daily doses of MTX (0.75 mg/kg) on the cellular activities in the growth plate in producing calcified cartilage and trabecular bone and on activities of osteoblastic cells in the metaphysis.

View Article and Find Full Text PDF

Chemotherapy often induces bone growth defects in pediatric cancer patients; yet the underlying cellular mechanisms remain unclear and currently no preventative treatments are available. Using an acute chemotherapy model in young rats with the commonly used antimetabolite methotrexate (MTX), this study investigated damaging effects of five once-daily MTX injections and potential protective effects of supplementary treatment with antidote folinic acid (FA) on cellular activities in the tibial growth plate, metaphysis, and bone marrow. MTX suppressed proliferation and induced apoptosis of chondrocytes, and reduced collagen-II expression and growth plate thickness.

View Article and Find Full Text PDF

Injured growth plate cartilage is often repaired by bony tissue, resulting in impaired bone growth in children. Previously, injury-induced, initial inflammatory response was shown to be an acute inflammatory event containing predominantly neutrophils. To examine potential roles of neutrophils in the bony repair, a neutrophil-neutralizing antiserum or control normal serum was administered systemically in rats with growth plate injury.

View Article and Find Full Text PDF

The injured growth plate cartilage is often repaired by bony tissue, resulting in impaired bone growth in children. Bone morphogenic proteins (BMPs) are important for bone fracture repair, and as a step to characterize potential involvement of BMPs in bony repair of injured growth plate, expression of BMPs and receptors (BMP-R) was examined by quantitative RT-PCR and immunohistochemistry in rat injured tibial growth plate. During the inflammatory response on day 1, slightly increased expression of BMP-3, BMP-4, BMP-R1a, and BMP-R2 was observed, with immunostaining seen among inflammatory cells at the injury site.

View Article and Find Full Text PDF