Publications by authors named "Michael de Wild"

Background: Bioresorbable patient-specific additive-manufactured bone grafts, meshes, and plates are emerging as a promising alternative that can overcome the challenges associated with conventional off-the-shelf implants. The fabrication of patient-specific implants (PSIs) directly at the point-of-care (POC), such as hospitals, clinics, and surgical centers, allows for more flexible, faster, and more efficient processes, reducing the need for outsourcing to external manufacturers. We want to emphasize the potential advantages of producing bioresorbable polymer implants for cranio-maxillofacial surgery at the POC by highlighting its surgical applications, benefits, and limitations.

View Article and Find Full Text PDF

Background: Nonunion and plate exposure represent a major complication after mandibular reconstruction with free fibula flaps. These drawbacks may be resolved by geometric osteotomies increasing intersegmental bone contact area and stability.

Purpose: The aim of this study was to compare intersegmental bone contact and stability of geometric osteotomies to straight osteotomies in mandibular reconstructions with free fibula grafts performed by robot-guided erbium-doped yttrium aluminum garnet laser osteotomy.

View Article and Find Full Text PDF

Autologous bone remains the gold standard bone substitute in clinical practice. Therefore, the microarchitecture of newly developed synthetic bone substitutes, which reflects the spatial distribution of materials in the scaffold, aims to recapitulate the natural bone microarchitecture. However, the natural bone microarchitecture is optimized to obtain a mechanically stable, lightweight structure adapted to the biomechanical loading situation.

View Article and Find Full Text PDF

Despite the recent advances in 3D-printing, it is often difficult to fabricate implants that optimally fit a defect size or shape. There are some approaches to resolve this issue, such as patient-specific implant/scaffold designs based on CT images of the patients, however, this process is labor-intensive and costly. Especially in developing countries, affordable treatment options are required, while still not excluding these patient groups from potential material and manufacturing advances.

View Article and Find Full Text PDF

Only a few mandibular bone finite element (FE) models have been validated in literature, making it difficult to assess the credibility of the models. In a comparative study between FE models and biomechanical experiments using a synthetic polyamide 12 (PA12) mandible model, we investigate how material properties and boundary conditions affect the FE model's accuracy using the design of experiments approach. Multiple FE parameters, such as contact definitions and the materials' elastic and plastic deformation characteristics, were systematically analyzed for an intact mandibular model and transferred to the fracture fixation model.

View Article and Find Full Text PDF
Article Synopsis
  • Bone graft materials are used to fill bone defects and support implant placement, but current options often fail to be fully replaced by new bone within 3 to 6 months.
  • A new material called Bonewool, made from biodegradable PLGA fibers with ß-TCP nanoparticles, was tested against Bio-Oss, a common bovine hydroxyapatite graft.
  • The study found that Bonewool showed a more progressive degradation behavior, suggesting it could be fully resorbed, making it a promising alternative for bone augmentation.
View Article and Find Full Text PDF

Background: Cheese-wiring, the suture that cuts through the meniscus, is a well-known issue in meniscal repair. So far, contributing factors are neither fully understood nor sufficiently studied.

Hypothesis/purpose: To investigate whether the construct stiffness of repair sutures and devices correlates with suture cut-through (cheese-wiring) during load-to-failure testing.

View Article and Find Full Text PDF

Background: Previous biomechanical studies used single-pull destructive tests in line with the anchor and are limited by a great variability of bone density of cadaver samples. To overcome these limitations, a more physiological test setting was provided using titanium, bioresorbable, and all-suture anchors.

Methods: In this controlled laboratory study, 3 anchor constructs were divided into 2 groups: physiological and osteoporotic.

View Article and Find Full Text PDF

Purpose: Suprapectoral tenodesis is a frequently used technique for treating pathologies of the long head of the biceps brachii (LHBB) tendon. However, so far, no Gold Standard treatment exist. Hence, the arthroscopic LassoLoop360 (LL360) technique is introduced aiming to provide secure fixation and improved biomechanical properties.

View Article and Find Full Text PDF

Additive manufacturing of bone tissue engineering scaffolds will become a key element for personalized bone tissue engineering in the near future. Several additive manufacturing processes are based on extrusion where the deposition of the filament will result in a three-dimensional lattice structure. Recently, we studied diverse lattice structures for bone tissue engineering realized by laser sintering of titanium.

View Article and Find Full Text PDF

Background: Silver ions (Ag+) have strong antibacterial effects, and silver-coated materials are in widespread clinical use. However, the application of silver-coated medical devices is not without concerns: its use with direct bone contact is not established, and systemic toxic side effects of released Ag+ have been described. Therefore, alternative bactericidal coatings with a more localized way of acting - e.

View Article and Find Full Text PDF

Background: Animal models serve as an important tool to understand peri-implant infection. Most of the models use high bacterial loads (>10(4) colony forming units, CFU) to provide high infection rates. Therefore these animals evolve rather similarly, making comparison between groups and statistical analysis possible.

View Article and Find Full Text PDF

Resorbable bone substitute materials are widely used for bone augmentation after tumor resection, parallel to implant placement, or in critical size bone defects. In this study, the structural dissolution of a biphasic calcium phosphate bone substitute material with a hydroxyapatite (HA)/tricalcium phosphate (β-TCP) ratio of 60/40 was investigated by repeatedly placing porous blocks in EDTA solution at 37 °C. At several time points, the blocks were investigated by SEM, µCT, and gravimetry.

View Article and Find Full Text PDF

Secondary bone fracture healing is a physiological process that leads to functional tissue regeneration via endochondral bone formation. In vivo studies have demonstrated that early mobilization and the application of mechanical loads enhances the process of fracture healing. However, the influence of specific mechanical stimuli and particular effects during specific phases of fracture healing remain to be elucidated.

View Article and Find Full Text PDF

Bone morphogenetic proteins (BMPs) are growth and differentiation factors involved during development in morphogenesis, organogenesis and later mainly in regeneration processes, in particular in bone where they are responsible for osteoinduction. For more than a decade, recombinant human (rh)BMP-2 has been used in the clinic for lumbar spinal fusion at non-physiological high dosages that appear to be causative for side effects, like male sterility. A possible strategy to reduce the effective amount of rhBMP-2 in the clinic is the co-delivery with an enhancer of BMPs' activity.

View Article and Find Full Text PDF
Article Synopsis
  • Calcium phosphate-based ceramics are common in bone repair but lack tensile strength, while bulk titanium is an established implant material that doesn’t match bone mechanics, leading to fixation issues.
  • Nickel-titanium alloys offer unique mechanical properties, including low elasticity and pseudoelasticity, making them better suited for mimicking bone characteristics.
  • Research showed that human mesenchymal stromal cells proliferated and differentiated similarly on selective laser melted nickel-titanium scaffolds as on traditional titanium, suggesting nickel-titanium could be a superior bone substitute.
View Article and Find Full Text PDF

Biomaterials with antimicrobial properties are now commonly used in different clinical specialties including orthopedics, endodontic, and traumatology. As a result, assessing the antimicrobial effect of coatings applied on implants is of critical importance. In this study, we demonstrate that isothermal microcalorimetry (IMC) can be used for monitoring bacterial growth and biofilm formation at the surface of such coatings and for determining their antimicrobial effects.

View Article and Find Full Text PDF

Background: All-inside arthroscopic meniscal repairs are favored by most clinicians because of their lower complication rate and decreased morbidity compared with inside-out techniques. Until now, only 1000 cycles have been used for biomechanical testing.

Hypothesis: All-inside meniscal repairs will show inferior biomechanical response to cyclic loading (up to 100,000 cycles) and load-to-failure testing compared with inside-out suture controls.

View Article and Find Full Text PDF

Appropriate mechanical stimulation of bony tissue enhances osseointegration of load-bearing implants. Uniaxial compression of porous implants locally results in tensile and compressive strains. Their experimental determination is the objective of this study.

View Article and Find Full Text PDF

The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting.

View Article and Find Full Text PDF

The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated.

View Article and Find Full Text PDF

Mimicking proteins found in the extracellular matrix (ECM) using specific peptide sequences is a well-known strategy for the design of biomimetic surfaces, but has not yet been widely exploited in the field of biomedical implants. This study investigated osteoblast and, as a control, fibroblast proliferation to novel consensus heparin-binding peptides sequences KRSR and FHRIKKA that were immobilized onto rough (particle-blasted and chemically etched) commercially pure titanium surfaces using a poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) molecular assembly system. This platform enabled a detailed study of specific cell-peptide interactions even in the presence of serum in the culture medium; thanks to the excellent nonfouling properties of the PLL-g-PEG surface.

View Article and Find Full Text PDF

The goal of this study was to reproducibly generate samples with complex surface topographies and chemistries identical to a "master surface" and to test their response in cell culture using rat calvarial cells. Negative replicas of dual-type topography were fabricated using dental impression material with half of the surface exhibiting smooth and rough topography, respectively. Positive epoxy resin replicas were cast from the same negative replica eight times consecutively and coated with a 60-nm thin film of titanium dioxide using a vapor deposition technique.

View Article and Find Full Text PDF

Surface topography and (bio)chemistry are key factors in determining cell response to an implant. We investigated cell adhesion and spreading patterns of epithelial cells, fibroblasts and osteoblasts on biomimetically modified, smooth and rough titanium surfaces. The RGD bioactive peptide sequence was immobilized via a non-fouling poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) molecular assembly system, which allowed exploitation of specific cell-peptide interactions even in the presence of serum.

View Article and Find Full Text PDF