Publications by authors named "Michael de Volder"

Anode-free Li-ion batteries (AFBs), where a Cu current collector is used to plate and strip Li instead of a classic anode, are promising technologies to increase the energy density of batteries. In addition, AFBs are safer and easier to manufacture than competing Li-metal anodes and solid-state batteries. However, the loss of Li inventory that occurs during the operation of AFBs limits their lifespan and practical application.

View Article and Find Full Text PDF

The application of nanosized active particles in Li-ion batteries has been the subject of intense investigation, yielding mixed results in terms of overall benefits. While nanoparticles have shown promise in improving rate performance and reducing issues related to cracking, they have also faced criticism due to side reactions, low packing density, and consequent subpar volumetric battery performance. Interesting processes such as self-assembly have been proposed to increase packing density, but these tend to be incompatible with scalable processes such as roll-to-roll coating, which are essential to manufacture electrodes at scale.

View Article and Find Full Text PDF

The downsizing of microscale energy storage devices plays a crucial role in powering modern emerging devices. Therefore, the scientific focus on developing high-performance microdevices, balancing energy density and power density, becomes essential. In this context, we explore an advanced Microplotter technique to fabricate hybrid planar Zn-ion microcapacitors (ZIMCs) that exhibit dual charge storage characteristics, with an electrical double layer capacitor type activated carbon anode and a battery type VO (B) cathode, aiming to achieve energy density surpassing supercapacitors and power density exceeding batteries.

View Article and Find Full Text PDF
Article Synopsis
  • The rise in demand for autonomous off-grid devices has led to the creation of "photobatteries," combining light energy harvesting and electrochemical storage in one system.
  • Research using a three-electrode photobattery reveals that effective photocharging requires the conduction band quasi-Fermi level to be higher than the anodes' plating potential.
  • The study also highlights that mismatched voltage between the battery and solar cell can speed up unwanted reactions once the battery is fully charged, stressing the importance of precise conditions for charge transfer.
View Article and Find Full Text PDF

Photoenhanced batteries, where light improves the electrochemical performance of batteries, have gained much interest. Recent reports suggest that light-to-heat conversion can also play an important role. In this work, we study Prussian blue analogues (PBAs), which are known to have a high photothermal heating efficiency and can be used as cathodes for Li-ion batteries.

View Article and Find Full Text PDF

We report the synthesis of LiCoO (LCO) cathode materials for lithium-ion batteries via aerosol spray pyrolysis, focusing on the effect of synthesis temperatures from 600 to 1000 °C on the materials' structural and morphological features. Utilizing both nitrate and acetate metal precursors, we conducted a comprehensive analysis of material properties through X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Our findings reveal enhanced crystallinity and significant oxide decomposition within the examined temperature range.

View Article and Find Full Text PDF

Recently, aqueous iron ion batteries (AIIBs) using iron metal anodes have gained traction in the battery community as low-cost and sustainable solutions for green energy storage. However, the development of AIIBs is significantly hindered by the limited capacity of existing cathode materials and the poor intercalation kinetic of Fe. Herein, we propose a H and Fe co-intercalation electrochemistry in AIIBs to boost the capacity and rate capability of cathode materials such as iron hexacyanoferrate (FeHCF) and NaFe(PO)(PO) (NFPP).

View Article and Find Full Text PDF

Zinc ion batteries (ZIBs) have emerged as promising candidates for renewable energy storage owing to their affordability, safety, and sustainability. However, issues with Zn metal anodes, such as dendrite growth, hydrogen evolution reaction (HER), and corrosion, significantly hinder the practical application of ZIBs. To address these issues, organic solid electrolyte interface (SEI) layers have gained traction in the ZIB community as they can, for instance, help achieve uniform Zn plating/stripping and suppress side reactions.

View Article and Find Full Text PDF

Li-ion batteries have a pivotal role in the transition toward electric transportation. Ni-rich layered transition metal oxide (LTMO) cathode materials promise high specific capacity and lower cost but exhibit faster degradation compared with lower Ni alternatives. Here, we employ high-resolution electron microscopy and spectroscopy techniques to investigate the nanoscale origins and impact on performance of intragranular cracking (within primary crystals) in Ni-rich LTMOs.

View Article and Find Full Text PDF

In recent years, there has been an increased focus on studying light-battery interactions in the context of operando optical studies and integrated photoelectrochemical energy harvesting. However, there has been little insight into identifying suitable "light-accepting" current collectors for this class of batteries. In this study, fluorine-doped tin oxide, indium-tin oxide, and silver nanowire-graphene films are analyzed along with carbon paper, carbon nanotube paper, and stainless-steel mesh as current collectors for optical batteries.

View Article and Find Full Text PDF

The Daniell cell (Cu Zn), was invented almost two centuries ago, but has been set aside due to its non-rechargeable nature and limited energy density. However, these cells are exceptionally sustainable because they do not require rare earth elements, are aqueous and easy to recycle. This work addresses key challenges in making Daniell cells relevant to our current energy crisis.

View Article and Find Full Text PDF

Solar power represents an abundant and readily available source of renewable energy. However, its intermittent nature necessitates external energy storage solutions, which can often be expensive, bulky, and associated with energy conversion losses. This study introduces the concept of a photo-accelerated battery that seamlessly integrates energy harvesting and storage functions within a single device.

View Article and Find Full Text PDF

Light-rechargeable photobatteries have emerged as an elegant solution to address the intermittency of solar irradiation by harvesting and storing solar energy directly through a battery electrode. Recently, a number of compact two-electrode photobatteries have been proposed, showing increases in capacity and open-circuit voltage upon illumination. Here, we analyze the thermal contributions to this increase in capacity under galvanostatic and photocharging conditions in two promising photoactive cathode materials, VO and LiMnO.

View Article and Find Full Text PDF

Lithium-sulfur batteries (LiSBs) are promising next-generation batteries because of their low cost and high theoretical energy densities. Despite remarkable advances over the decades, polysulfide (PS) shuttling during battery cycling remains a challenge in the development of commercial LiSBs and is accelerated under practical conditions. Herein, we report a permselective ionic shield between the electrodes that blocks PS shuttles and passes Li ions to high-performance LiSBs.

View Article and Find Full Text PDF

Light-responsive microactuators composed of vertically aligned carbon nanotube (CNT) forests mixed with poly(N-isopropylacrylamide) (PNIPAM) hydrogel composites are studied. The benefit of this composite is that CNTs act as a black absorber to efficiently capture radiative heating and trigger PNIPAM contraction. In addition, CNT forests can be patterned accurately using lithography to span structures ranging from a few micrometers to several millimeters in size, and these CNT-PNIPAM composites can achieve response times as fast as 15 ms.

View Article and Find Full Text PDF

Responsive nanomaterials are being developed to create new unique functionalities such as switchable colors and adhesive properties or other programmable features in response to external stimuli. While many existing examples rely on changes in temperature, humidity, or pH, this study aims to explore an alternative approach relying on simple electric input signals. More specifically, 3D electrochromic architected microstructures are developed using carbon nanotube-Tin (Sn) composites that can be reconfigured by lithiating Sn with low power electric input (≈50 nanowatts).

View Article and Find Full Text PDF

Understanding (de)lithiation heterogeneities in battery materials is key to ensure optimal electrochemical performance. However, this remains challenging due to the three-dimensional morphology of electrode particles, the involvement of both solid- and liquid-phase reactants and a range of relevant timescales (seconds to hours). Here we overcome this problem and demonstrate the use of confocal microscopy for the simultaneous three-dimensional operando measurement of lithium-ion dynamics in individual agglomerate particles, and the electrolyte in batteries.

View Article and Find Full Text PDF

Photobatteries, batteries with a light-sensitive electrode, have recently been proposed as a way of simultaneously capturing and storing solar energy in a single device. Despite reports of photocharging with multiple different electrode materials, the overall mechanism of operation remains poorly understood. Here, we use optical reflection microscopy to investigate light-induced charging in LiVO electrodes.

View Article and Find Full Text PDF

Lithium (Li) metal is a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical specific capacity of 3860 mAh g and the low potential of -3.04 V versus the standard hydrogen electrode (SHE). However, these anodes rely on repeated plating and stripping of Li, which leads to consumption of Li inventory and the growth of dendrites that can lead to self-discharge and safety issues.

View Article and Find Full Text PDF

As soft robotic systems grow in complexity and functionality, the size and stiffness of the needed control hardware severely limits their application potential. Alternatively, functionality can be embodied within actuator characteristics, drastically reducing the amount of peripherals. Functions such as memory, computation, and energy storage then result from the intrinsic mechanical behavior of precisely designed structures.

View Article and Find Full Text PDF

To increase the energy density of lithium-ion batteries (LIBs), high-capacity anodes which alloy with Li ions at a low voltage against Li/Li have been actively pursued. So far, Si has been studied the most extensively because of its high specific capacity and cost efficiency; however, Ge is an interesting alternative. While the theoretical specific capacity of Ge (1600 mAh g) is only half that of Si, its density is more than twice as high (Ge, 5.

View Article and Find Full Text PDF

The development of photo-enhanced lithium-ion batteries, where exposing the electrodes to light results in higher capacities, higher rate performance or self-charging, has recently gained substantial traction. The challenge in these devices lies in the realisation of photo-electrodes with good optical and electrochemical properties. Herein, we propose copper-hexahydroxybenzene as the active photo-electrode material which both harvests light and stores energy.

View Article and Find Full Text PDF

The development of devices with dual solar energy-harvesting and storage functionalities has recently gained significant traction for off-grid power supply. In their most compact embodiment, these devices rely on the same electrode to harvest and store energy; however, in this approach, the development of energy-efficient photoelectrodes with intrinsic characteristics of good optical and electrochemical activities remains challenging. Here, we propose photoelectrodes with a porous carbon coated on a zinc oxide-cadmium sulfide heterostructure as an energy-efficient photocathode for photo-accelerated zinc ion capacitors (Photo-ZICs).

View Article and Find Full Text PDF

Although individual carbon nanotubes (CNTs) are superior to polymer chains, the mechanical and thermal properties of CNT fibers (CNTFs) remain inferior to synthetic fibers because of the failure of embedding CNTs effectively in superstructures. Conventional techniques resulted in a mild improvement of target properties while degrading others. Here, a double-drawing technique is developed to rearrange the constituent CNTs.

View Article and Find Full Text PDF