Object: Glioblastoma stem-like cells (GSCs) exhibit stem-like properties, are highly efficient at forming tumor xenografts, and are resistant to many current therapies. Current molecular identifiers of GSCs are scarce and controversial. The authors describe differential cell-surface gene expression profiling to identify GSC-specific markers.
View Article and Find Full Text PDFGlioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in humans. It accounts for fifty-two percent of primary brain malignancies in the United States and twenty percent of all primary intracranial tumors. Despite the current standard therapies of maximal safe surgical resection followed by temozolomide and radiotherapy, the median patient survival is still less than 2 years due to inevitable tumor recurrence.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) signaling is strongly implicated in glioblastoma (GBM) tumorigenesis. However, molecular agents targeting EGFR have demonstrated minimal efficacy in clinical trials, suggesting the existence of GBM resistance mechanisms. GBM cells with stem-like properties (CSCs) are highly efficient at tumor initiation and exhibit therapeutic resistance.
View Article and Find Full Text PDFPurpose: Glioblastoma multiforme (GBM) is a poorly treated human brain cancer with few established clinically useful molecular prognostic markers. We characterized glioblastoma stem-like cells (GSC) according to developmental neural lineage markers and correlated their expression with patient survival.
Experimental Design: Immunoblot array of neural lineage markers classified five independently isolated human GSC lines into three classes exhibiting differential expression of oligodendrocyte progenitor cells (OPC), astrocyte progenitor cells (APC), and neural progenitor cells (NPC) markers.
Induced pluripotent stem (iPS) cell technology has enormous potential to advance medical therapy by personalizing regenerative medicine and creating novel human disease models for research and therapeutic testing. Before this technology is broadly used in the clinic, we must realistically evaluate its disease modeling and therapeutic potential. Recent advances including the use of iPS cells to successfully model spinal muscular atrophy in vitro, as well as new techniques in generating iPS cells with recombinant proteins have accelerated the prospects of iPS cells for clinical use in regenerative therapy.
View Article and Find Full Text PDFIn Parkinson's disease (PD), misfolded and aggregated α-synuclein protein accumulates in degenerating midbrain dopaminergic neurons. The amino acid alanine-76 in α-synuclein and phosphorylation at serine-87 and serine-129 are thought to regulate its aggregation and toxicity. However, their exact contributions to α-synuclein membrane association are less clear.
View Article and Find Full Text PDFImportance Of The Field: Cancer is the second leading cause of death in the United States, and therefore remains a central focus of modern medical research. Accumulating evidence supports a 'cancer stem cell' (CSC) model - where cancer growth and/or recurrence is driven by a small subset of tumor cells that exhibit properties similar to stem cells. This model may provide a conceptual framework for developing more effective cancer therapies that target cells propelling cancer growth.
View Article and Find Full Text PDF