Publications by authors named "Michael Zapf"

Ultrasound tomography (USCT) is a promising imaging modality, mainly aiming at early diagnosis of breast cancer. It provides three-dimensional, reproducible images of higher quality than conventional ultrasound methods and additionally offers quantitative information on tissue properties. This chapter provides an introduction to the background and history of USCT, followed by an overview of image reconstruction algorithms and system design.

View Article and Find Full Text PDF

A potential method for future breast cancer screening is 3-D ultrasound computed tomography (USCT). The utilized image reconstruction algorithms require transducer characteristics fundamentally different from conventional transducer arrays, leading to the necessity of a custom design. This design has to provide random transducer positioning, isotropic sound emission as well as a large bandwidth and wide opening angle.

View Article and Find Full Text PDF

Synthetic-aperture (SA) imaging is a popular method to visualize the reflectivity of an object from ultrasonic reflections. The method yields an image of the (volume) contrast in acoustic impedance with respect to the embedding. Typically, constant mass density is assumed in the underlying derivation.

View Article and Find Full Text PDF

The Mott transistor is a paradigm for a new class of electronic devices-often referred to by the term Mottronics-which are based on charge correlations between the electrons. Since correlation-induced insulating phases of most oxide compounds are usually very robust, new methods have to be developed to push such materials right to the boundary to the metallic phase in order to enable the metal-insulator transition to be switched by electric gating. Here, it is demonstrated that thin films of the prototypical Mott insulator LaTiO grown by pulsed laser deposition under oxygen atmosphere are readily tuned by excess oxygen doping across the line of the band-filling controlled Mott transition in the electronic phase diagram.

View Article and Find Full Text PDF

Ultrasound is frequently used to evaluate suspicious masses in breasts. These evaluations could be improved by taking advantage of advanced imaging algorithms, which become feasible for low frequencies if accurate knowledge about the phase and amplitude of the wave field illuminating the volume of interest is available. In this study, we compare five imaging and inversion methods: time-of-flight tomography, synthetic aperture focusing technique, backpropagation, Born inversion, and contrast source inversion.

View Article and Find Full Text PDF

A promising candidate for imaging of breast cancer is ultrasound computer tomography (USCT). The main advantages of a USCT system are simultaneous recording of reproducible reflection, attenuation and speed of sound volumes, high image quality, and fast data acquisition. The here presented 3D USCT prototype realizes for the first time the full potential of such a device.

View Article and Find Full Text PDF

The paper is focused on sound-speed image reconstruction in 3-D ultrasound transmission tomography. Along with ultrasound reflectivity and the attenuation coefficient, sound speed is an important parameter which is related to the type and pathological state of the imaged tissue. This is important in the intended application, breast cancer diagnosis.

View Article and Find Full Text PDF

This paper presents a method for geometrical and time-delay auto-calibration of an ultrasonic computed tomography (USCT) system. The algorithms used for the calibration are based on the principles similar to the global positioning system (GPS) navigation. Ultrasonic transmitters and receivers in USCT can be viewed like satellite transmitters and mobile receiver units in GPS.

View Article and Find Full Text PDF