Publications by authors named "Michael Zaletel"

Recent experiments on rhombohedral pentalayer graphene with a substrate-induced moiré potential have identified both Chern insulators and fractional quantum Hall states at zero magnetic field. Surprisingly, these states are observed in strong displacement fields where the effects of the moiré lattice are weak, and seem to be readily accessed without fine-tuning. To address these experimental puzzles, we study a model of interacting electrons in this geometry.

View Article and Find Full Text PDF

One-dimensional (1D) interacting electrons are often described as a Luttinger liquid having properties that are intrinsically different from those of Fermi liquids in higher dimensions. In materials systems, 1D electrons exhibit exotic quantum phenomena that can be tuned by both intra- and inter-1D-chain electronic interactions, but their experimental characterization can be challenging. Here we demonstrate that layer-stacking domain walls (DWs) in van der Waals heterostructures form a broadly tunable Luttinger liquid system, including both isolated and coupled arrays.

View Article and Find Full Text PDF

Wigner predicted that when the Coulomb interactions between electrons become much stronger than their kinetic energy, electrons crystallize into a closely packed lattice. A variety of two-dimensional systems have shown evidence for Wigner crystals (WCs). However, a spontaneously formed classical or quantum WC has never been directly visualized.

View Article and Find Full Text PDF

Electrical control of magnetism has been a major technological pursuit of the spintronics community, owing to its far-reaching implications for data storage and transmission. Here, we propose and analyze a new mechanism for electrical switching of isospin, using chiral-stacked graphene multilayers, such as Bernal bilayer graphene or rhombohedral trilayer graphene, encapsulated by transition metal dichalcogenide (TMD) substrates. Leveraging the proximity-induced spin-orbit coupling from the TMD, we demonstrate electrical switching of correlation-induced spin and/or valley polarization, by reversing a perpendicular displacement field or the chemical potential.

View Article and Find Full Text PDF
Article Synopsis
  • Bernal bilayer graphene exhibits even-denominator fractional quantum Hall states, theorized to have a Pfaffian wave function with non-Abelian quasiparticle excitations.
  • The study reports measurements of fractional quantum Hall energy gaps, revealing a transport activation gap of 5.1 K at 12 T for a half-filled N=1 Landau level, which aligns with theoretical predictions.
  • However, the measured thermodynamic gap of 11.6 K is about half of what was expected in an ideal clean scenario, a discrepancy attributed to disorder effects analyzed through a model of a Wigner crystal of fractional quasiparticles.
View Article and Find Full Text PDF

We show that locally interacting, periodically driven (Floquet) Hamiltonian dynamics coupled to a Langevin bath support finite-temperature discrete time crystals (DTCs) with an infinite autocorrelation time. By contrast to both prethermal and many-body localized DTCs, the time crystalline order we uncover is stable to arbitrary perturbations, including those that break the time translation symmetry of the underlying drive. Our approach utilizes a general mapping from probabilistic cellular automata to open classical Floquet systems undergoing continuous-time Langevin dynamics.

View Article and Find Full Text PDF

One-dimensional conductors are described by Luttinger liquid theory, which predicts a power-law suppression of the single-electron tunneling density of states at low voltages. The scaling exponent is predicted to be quantized when tunneling into a single isolated chiral edge state of the fractional quantum Hall effect. We report conductance measurements across a point contact linking integer and fractional quantum Hall edge states (at fillings 1 and [Formula: see text], respectively).

View Article and Find Full Text PDF

Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that reflect electronic correlation effects, broken symmetries and collective excitations. Many quantum phases have been discovered in magic-angle twisted bilayer graphene (MATBG), including correlated insulating, unconventional superconducting and magnetic topological phases. The lack of microscopic information of possible broken symmetries has hampered our understanding of these phases.

View Article and Find Full Text PDF

In recent years, correlated insulating states, unconventional superconductivity, and topologically non-trivial phases have all been observed in several moiré heterostructures. However, understanding of the physical mechanisms behind these phenomena is hampered by the lack of local electronic structure data. Here, we use scanning tunnelling microscopy and spectroscopy to demonstrate how the interplay between correlation, topology, and local atomic structure determines the behaviour of electron-doped twisted monolayer-bilayer graphene.

View Article and Find Full Text PDF

Quantum computing promises to offer substantial speed-ups over its classical counterpart for certain problems. However, the greatest impediment to realizing its full potential is noise that is inherent to these systems. The widely accepted solution to this challenge is the implementation of fault-tolerant quantum circuits, which is out of reach for current processors.

View Article and Find Full Text PDF

Spontaneous symmetry breaking underlies much of our classification of phases of matter and their associated transitions. The nature of the underlying symmetry being broken determines many of the qualitative properties of the phase; this is illustrated by the case of discrete versus continuous symmetry breaking. Indeed, in contrast to the discrete case, the breaking of a continuous symmetry leads to the emergence of gapless Goldstone modes controlling, for instance, the thermodynamic stability of the ordered phase.

View Article and Find Full Text PDF

A growing body of experimental work suggests that magic angle twisted bilayer graphene exhibits a "cascade" of spontaneous symmetry-breaking transitions, sparking interest in the potential relationship between symmetry breaking and superconductivity. However, it has proven difficult to find experimental probes which can unambiguously identify the nature of the symmetry breaking. Here, we show how atomically resolved scanning tunneling microscopy can be used as a fingerprint of symmetry-breaking order.

View Article and Find Full Text PDF

Superconductivity was recently discovered in rhombohedral trilayer graphene (RTG) in the absence of a moiré potential. Superconductivity is observed proximate to a metallic state with reduced isospin symmetry, but it remains unknown whether this is a coincidence or a key ingredient for superconductivity. Using a Hartree-Fock analysis and constraints from experiments, we argue that the symmetry breaking is inter-valley coherent (IVC) in nature.

View Article and Find Full Text PDF

The interaction between electrons in graphene under high magnetic fields drives the formation of a rich set of quantum Hall ferromagnetic (QHFM) phases with broken spin or valley symmetry. Visualizing atomic-scale electronic wave functions with scanning tunneling spectroscopy (STS), we resolved microscopic signatures of valley ordering in QHFM phases and spectral features of fractional quantum Hall phases of graphene. At charge neutrality, we observed a field-tuned continuous quantum phase transition from a valley-polarized state to an intervalley coherent state, with a Kekulé distortion of its electronic density.

View Article and Find Full Text PDF

We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormalization group calculations, we find that small strain values (ε∼0.1%-0.

View Article and Find Full Text PDF

Topological solitons, a class of stable nonlinear excitations, appear in diverse domains as in the Skyrme model of nuclear forces. Here, we argue that similar excitations play an important role in a remarkable material obtained on stacking and twisting two sheets of graphene. Close to a magic twist angle, insulating behavior is observed, which gives way to superconductivity on doping.

View Article and Find Full Text PDF

The discovery of interaction-driven insulating and superconducting phases in moiré van der Waals heterostructures has sparked considerable interest in understanding the novel correlated physics of these systems. While a significant number of studies have focused on twisted bilayer graphene, correlated insulating states and a superconductivity-like transition up to 12 K have been reported in recent transport measurements of twisted double bilayer graphene. Here we present a scanning tunneling microscopy and spectroscopy study of gate-tunable twisted double bilayer graphene devices.

View Article and Find Full Text PDF

We describe an experimental technique to measure the chemical potential μ in atomically thin layered materials with high sensitivity and in the static limit. We apply the technique to a high quality graphene monolayer to map out the evolution of μ with carrier density throughout the N=0 and N=1 Landau levels at high magnetic field. By integrating μ over filling factor ν, we obtain the ground state energy per particle, which can be directly compared to numerical calculations.

View Article and Find Full Text PDF

Motivated by conjectures in holography relating the entanglement of purification and reflected entropy to the entanglement wedge cross section, we introduce two related non-negative measures of tripartite entanglement g and h. We prove structure theorems which show that states with nonzero g or h have nontrivial tripartite entanglement. We then establish that in one dimension these tripartite entanglement measures are universal quantities that depend only on the emergent low-energy theory.

View Article and Find Full Text PDF

We propose and analyze a method for preparing low entropy many-body states in isolated quantum optical systems of atoms, ions, and molecules. Our approach is based upon shifting entropy between different regions of a system by spatially modulating the magnitude of the effective Hamiltonian. We conduct two case studies, on a topological spin chain and the spinful fermionic Hubbard model, focusing on the key question: can a "conformal cooling quench" remove sufficient entropy within experimentally accessible timescales? Finite-temperature, time-dependent matrix product state calculations reveal that even moderately sized bath regions can remove enough energy and entropy density to expose coherent low-temperature physics.

View Article and Find Full Text PDF

We use the half-filled zeroth Landau level in graphene as a regularization scheme to study the physics of the SO(5) nonlinear sigma model subject to a Wess-Zumino-Witten topological term in 2+1 dimensions. As shown by Ippoliti et al. [Phys.

View Article and Find Full Text PDF

Motivated by the recent observation of an anomalous Hall effect in twisted bilayer graphene, we use a lowest Landau level model to understand the origin of the underlying symmetry-broken correlated state. This effective model is rooted in the occurrence of Chern bands which arise due to the coupling between the graphene device and its encapsulating substrate. Our model exhibits a phase transition from a spin-valley polarized insulator to a partial or fully valley unpolarized metal as the bandwidth is increased relative to the interaction strength, consistent with experimental observations.

View Article and Find Full Text PDF

Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz that allows for highly efficient contraction of the network. We consider two concrete applications using this ansatz.

View Article and Find Full Text PDF

A wide variety of two-dimensional electron systems allow for independent control of the total and relative charge density of two-component fractional quantum Hall (FQH) states. In particular, a recent experiment on bilayer graphene (BLG) observed a continuous transition between a compressible and incompressible phase at total filling ν_{T}=1/2 as charge is transferred between the layers, with the remarkable property that the incompressible phase has a finite interlayer polarizability. We argue that this occurs because the topological order of ν_{T}=1/2 systems supports a novel type of interlayer exciton that carries Fermi statistics.

View Article and Find Full Text PDF

Topologically ordered phases are characterized by long-range quantum entanglement and fractional statistics rather than by symmetry breaking. First observed in a fractionally filled continuum Landau level, topological order has since been proposed to arise more generally at fractional fillings of topologically nontrivial Chern bands. Here we report the observation of gapped states at fractional fillings of Harper-Hofstadter bands arising from the interplay of a magnetic field and a superlattice potential in a bilayer graphene-hexagonal boron nitride heterostructure.

View Article and Find Full Text PDF