Publications by authors named "Michael Z Hu"

Solar-thermal driven desalination based on porous carbon materials has promise for fresh water production. Exploration of high-efficiency solar desalination devices has not solved issues for practical application, namely complicated fabrication, cost-effectiveness, and scalability. Here, direct solar-thermal carbon distillation (DS-CD) tubular devices are introduced that have a facile fabrication process, are scalable, and use an inexpensive but efficient microporous graphite foam coated with carbon nanoparticle and superhydrophobic materials.

View Article and Find Full Text PDF

Surface wettability-tailored porous ceramic/metallic membranes (in the tubular and planar disc form) were prepared and studied for both vapor-phase separation and liquid pervaporative separations of water-ethanol mixtures. Superhydrophobic nanoceramic membranes demonstrated more selective permeation of ethanol (relative to water) by cross-flow pervaporation of liquid ethanol⁻water mixture (10 wt % ethanol feed at 80 °C). In addition, both superhydrophilic and superhydrophobic membranes were tested for the vapor-phase separations of water⁻ethanol mixtures.

View Article and Find Full Text PDF

Background: Controlled self-assembly using molecules/nanoparticles as building block materials represents an important approach for nanofabrication.

Method: We present a "bottom-up" fabrication approach to first grow a new class of inorganic (silica) long hair-like microfibrils or microwires and then to form monolithic solid pellet that contains parallel arrays of bundled microfibrils with a controlled orientation. During the sol-gel solution processing, reactive precursor species are utilized as molecular "building blocks" for the field-directed assembly growth of microfibrils driven by an electric field of pulsed direct current (dc) with controlled frequency.

View Article and Find Full Text PDF

This paper reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors.

View Article and Find Full Text PDF

We report microbially facilitated synthesis of cadmium sulfide (CdS) nanostructured particles (NP) using anaerobic, metal-reducing Thermoanaerobacter sp. The extracellular CdS crystallites were <10 nm in size with yields of ~3 g/L of growth medium/month with demonstrated reproducibility and scalability up to 24 L. During synthesis, Thermoanaerobacter cultures reduced thiosulfate and sulfite salts to H₂S, which reacted with Cd²⁺ cations to produce thermodynamically favored NP in a single step at 65 °C with catalytic nucleation on the cell surfaces.

View Article and Find Full Text PDF

In response to the demands for energy and the concerns of global warming and climate change, energy efficient and environmentally friendly solid-state lighting, such as white light-emitting diodes (WLEDs), is considered to be the most promising and suitable light source. Because of their small size, high efficiency, and long lifetime, WLEDs based on colloidal semiconductor nanocrystals (or quantum dots) are emerging as a completely new technology platform for the development of flat-panel displays and solid-state lighting, exhibiting the potential to replace the conventionally used incandescent and fluorescent lamps. This replacement can cut the ever-increasing level of energy consumption, solve the problem of rapidly depleting fossil fuel reserves, and improve the quality of the global environment.

View Article and Find Full Text PDF

An investigation show that the temperature-induced band gap (E(g)) variation of PbSe nanocrystals is strongly size-dependent. The temperature coefficients (dE(g)/dT) evolve from negative to zero and then to positive values, with the increase of PbSe nanocrystal sizes. Such phenomena imply that PbSe nanocrystals may be the potential candidate as sensitive temperature markers.

View Article and Find Full Text PDF

"Critical" channel diameters were found (below which space confinement takes effect, leading to more uniform and ordered mesopore structures) in the study of evaporation-induced co-assembly of triblock-copolymer (P123) and silica molecular precursors (TEOS, tetraethyl orthosilicate) by employing channels in anodized aluminum oxide (AAO, 13-200 nm channel diameter) and in track-etched polycarbonate (EPC, 10-80 nm channel diameter) and for the first time we have observed a new mesopore structure (i.e., packed hollow spheres) in silica nanowires formed in AAO channels with diameters from 30 to 80 nm.

View Article and Find Full Text PDF

A fundamental nonequilibrium statistical mechanical approach due to Pozhar and Gubbins (PG) is used to study the Poiseuille flow and momentum transport in 20 model nanofluids confined in slit pores several molecular diameters in width. A simplified version of a general expression for the PG theoretical viscosity is applied to calculate the localized viscosity of the nanofluids in terms of the equilibrium structure factors (density and correlation functions) of nanosystems. These structure factors are calculated by means of the equilibrium molecular dynamics simulations.

View Article and Find Full Text PDF

This article reports results of experimental studies on the microstructural evolution of nanocrystalline yttrium-stabilized zirconia thin films synthesized on a Si substrate via a polymeric precursor spin-coating approach. Grain growth behavior has been investigated at different annealing temperatures (700-1200 degrees C) for periods of up to 240 h. A similar film thickness (approximately 120 nm) was maintained for all of the samples used in this study, to avoid variation in film thickness-dependent grain growth.

View Article and Find Full Text PDF