Publications by authors named "Michael Yonkunas"

The accumulation of the 8-kb oncogenic long noncoding MALAT1 RNA in cells is dependent on the presence of a protective triple helix structure at the 3' terminus. While recent studies have examined the functional importance of numerous base triples within the triplex and its immediately adjacent base pairs, the functional importance of peripheral duplex elements has not been thoroughly investigated. To investigate the functional importance of a peripheral linker region that was previously described as unstructured, we employed a variety of assays including thermal melting, protection from exonucleolytic degradation by RNase R, small-angle X-ray scattering, biochemical ligation and binding assays, and computational modeling.

View Article and Find Full Text PDF

The 3' end of the ∼7 kb lncRNA MALAT1 contains an evolutionarily and structurally conserved element for nuclear expression (ENE) which confers protection from cellular degradation pathways. Formation of an ENE triple helix is required to support transcript accumulation, leading to persistent oncogenic activity of MALAT1 in multiple cancer types. Though the specific mechanism of triplex-mediated protection remains unknown, the MALAT1 ENE triplex has been identified as a promising target for therapeutic intervention.

View Article and Find Full Text PDF

Metastasis-associated lung adenocarcinoma transcript 1 ( Malat1/ MALAT1, mouse/human), a highly conserved long noncoding (lnc) RNA, has been linked with several physiological processes, including the alternative splicing, nuclear organization, and epigenetic modulation of gene expression. MALAT1 has also been implicated in metastasis and tumor proliferation in multiple cancer types. The 3' terminal stability element for nuclear expression (ENE) assumes a triple-helical configuration that promotes its nuclear accumulation and persistent function.

View Article and Find Full Text PDF

Ionotropic glutamate receptors are a family of tetrameric ion channels with functional states consisting of nonconducting, conducting, and desensitized states that are starting to become well characterized by electrophysiological and biophysical studies. However, the structure and relative energetics of these states beyond the general structure of the receptor are still not well understood. It is known that the interface between monomeric subunits of the tetramer plays a major role in distinguishing these functional states.

View Article and Find Full Text PDF

N-methyl-d-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family that mediate excitatory synaptic transmission in the central nervous system. The channels of NMDARs are permeable to Ca2+ but blocked by Mg2+, distinctive properties that underlie essential brain processes such as induction of synaptic plasticity. However, due to limited structural information about the NMDAR transmembrane ion channel forming domain, the mechanism of divalent cation permeation and block is understood poorly.

View Article and Find Full Text PDF

Ion selectivity-filter structures are strikingly similar throughout the large family of K(++) channels and other p-loop-like receptors (i.e., glutamate receptors).

View Article and Find Full Text PDF

The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel superfamily, is the major inhibitory neurotransmitter-gated receptor in the spinal cord and brainstem. In these receptors, the extracellular domain binds agonists, antagonists and various other modulatory ligands that act allosterically to modulate receptor function. The structures of homologous receptors and binding proteins provide templates for modeling of the ligand-binding domain of GlyR, but limitations in sequence homology and structure resolution impact on modeling studies.

View Article and Find Full Text PDF

Tetrameric ligand binding domains of the family of ionotropic glutamate receptors assemble as dimers-of-dimers. Crystallographic studies of several glutamate receptor subtype isolated core-dimers suggest a single stable dimeric conformation. A binding domain dimer has not been captured in other conformations without the aid of biochemical methods to disrupt a critical dimer interface.

View Article and Find Full Text PDF

The ionotropic glutamate receptors are localized in the pre- and postsynaptic membrane of neurons in the brain. Activation by the principal excitatory neurotransmitter glutamate allows the ligand binding domain to change conformation, communicating opening of the channel for ion conduction. The free energy of the GluR2 S1S2 ligand binding domain (S1S2) closure transition was computed using a combination of thermodynamic integration and umbrella sampling modeling methods.

View Article and Find Full Text PDF

Major advances have been made on the inhibition gate and ATP site of the K(ir)6.2 subunit of the K(ATP) channel, but little is known about conformational coupling between the two. ATP site mutations dramatically disrupt ATP-dependent gating without effect on ligand-independent gating, observed as interconversions between active burst and inactive interburst conformations in the absence of ATP.

View Article and Find Full Text PDF

The nature and the sites of interactions between anesthetic halothane and homodimeric Delta5-3-ketosteroid isomerase (KSI) are characterized by flexible ligand docking and confirmed by 1H-15N NMR. The dynamics consequence of halothane interaction and the implication of the dynamic changes to KSI function are studied by multiple 5-ns molecular dynamics simulations in the presence and absence of halothane. Both docking and MD simulations show that halothane prefer the amphiphilic dimeric interface to the hydrophobic active site of KSI.

View Article and Find Full Text PDF