Publications by authors named "Michael Y-S Fang"

We describe a stochastic, dynamical system capable of inference and learning in a probabilistic latent variable model. The most challenging problem in such models-sampling the posterior distribution over latent variables-is proposed to be solved by harnessing natural sources of stochasticity inherent in electronic and neural systems. We demonstrate this idea for a sparse coding model by deriving a continuous-time equation for inferring its latent variables via Langevin dynamics.

View Article and Find Full Text PDF

For the benefit of designing scalable, fault resistant optical neural networks (ONNs), we investigate the effects architectural designs have on the ONNs' robustness to imprecise components. We train two ONNs - one with a more tunable design (GridNet) and one with better fault tolerance (FFTNet) - to classify handwritten digits. When simulated without any imperfections, GridNet yields a better accuracy (∼98%) than FFTNet (∼95%).

View Article and Find Full Text PDF