Publications by authors named "Michael Woolhiser"

Article Synopsis
  • A study on 2,4-Dichlorophenoxyacetic acid (2,4-D) in CD rats examined its potential toxicity across various areas, including systemic, reproductive, and developmental effects, using different dosage levels in the diet.
  • The results indicated kidney damage, particularly in high-dose males and females, as the primary toxic effect, with some minor endocrine changes, but no significant reproductive or neurodevelopmental toxicity was observed.
  • The established "No Observed Adverse Effect Level" for systemic toxicity was set at 300 ppm, which is significantly higher than what has been reported in human exposure studies.
View Article and Find Full Text PDF

The immunotoxic potential of trichloroethylene (TCE) and perchloroethylene (PERC) was assessed after inhalation exposure through the evaluation of the antibody forming cell (AFC) response to sheep red blood cells (SRBC). Female Sprague-Dawley rats were exposed to TCE or PERC vapor at 0, 100, 300, or 1000 ppm for 6 h/day, 5 days/week for 4 weeks (20 exposure days). Additional 0 ppm control groups were included and were dosed with cyclophosphamide via intraperitoneal injection to serve as positive immunosuppressive controls in the SRBC assay.

View Article and Find Full Text PDF

Polyurethanes (PU) are polymers made from diisocyanates and polyols for a variety of consumer products. It has been suggested that PU foam may contain trace amounts of residual toluene diisocyanate (TDI) monomers and present a health risk. To address this concern, the exposure scenario and health risks posed by sleeping on a PU foam mattress were evaluated.

View Article and Find Full Text PDF

Genomic approaches have the potential to enhance the specificity and predictive accuracy of existing toxicology endpoints, including those for chemical sensitization. The present study was conducted to determine whether gene expression responses can distinguish contact sensitizers (1-chloro-2,4-dinitrobenzene [DNCB] and hexyl cinnamic aldehyde [HCA]), respiratory sensitizers (ortho-phthalaldehyde and trimellitic anhydride [TMA]), and nonsensitizing irritants (methyl salicylate [MS] and nonanoic acid [NA]) in the local lymph node assay (LLNA). Female Balb/c mice received doses of each chemical as per the standard LLNA dosing regimen on days 1, 2, and 3.

View Article and Find Full Text PDF

Assessment of the acute systemic oral, dermal, and inhalation toxicities, skin and eye irritancy, and skin sensitisation potential of chemicals is required under regulatory schemes worldwide. In vivo studies conducted to assess these endpoints can sometimes be associated with substantial adverse effects in the test animals, and their use should always be scientifically justified. It has been argued that while information obtained from such acute tests provides data needed to meet classification and labelling regulations, it is of limited value for hazard and risk assessments.

View Article and Find Full Text PDF

There is a need for a simple and predictive model to identify the respiratory sensitization potential of (novel) proteins. The present study examined the use of a mouse draining lymph node assay (DLNA) approach, employing several routes of exposure, as a possible starting point for assessing protein sensitization potential. Consistent with the experimental procedure for the standard local lymph node assay (LLNA), female BALB/c mice were dosed dermally (topical), intranasally (IN) or by oropharyngeal aspiration (OP) on days 1, 2 and 3, and proliferation in the relevant draining lymph nodes was measured on day 6.

View Article and Find Full Text PDF

The safety assessment of genetically modified crops includes the evaluation for potential allergenicity. The current 'state-of-the-science' utilizes a weight of evidence approach, as outlined by the Codex Alimentarius commission (Alinorm 03/34 A), recognizing no single endpoint is predictive of the allergenic potential of a novel protein. This approach evaluates: whether the gene source is allergenic, sequence similarity to known allergens, and protein resistance to pepsin in vitro.

View Article and Find Full Text PDF

Genomic technologies have the potential to enhance and complement existing toxicology endpoints; however, assessment of these approaches requires a systematic evaluation including a robust experimental design with genomic endpoints anchored to traditional toxicology endpoints. The present study was conducted to assess the sensitivity of genomic responses when compared with the traditional local lymph node assay (LLNA) endpoint of lymph node cell proliferation and to evaluate the responses for their ability to provide insights into mode of action. Female BALB/c mice were treated with the sensitizer trimellitic anhydride (TMA), following the standard LLNA dosing regimen, at doses of 0.

View Article and Find Full Text PDF

EPA guidelines provide a choice in evaluating humoral immune system function in rats and mice immunized with sheep red blood cells (sRBC): an antibody-forming cell (AFC) assay or a sRBC-specific serum IgM enzyme-linked immunosorbent assay (ELISA). Four different laboratories used both methods to detect suppression of the antibody response by cyclophosphamide (CP) or dexamethasone (DEX). Attempts were made to minimize interlaboratory variability through the use of common reagents and vendors; each laboratory used the same source for rodents, immunosuppressive agents, and one sheep for sRBCs, and determined optimal sRBC concentration for immunization and peak day of antibody response in female CD rats and CD1 mice.

View Article and Find Full Text PDF

The mouse local lymph node assay (LLNA) has become the preferred test for evaluating the dermal sensitization potential of chemicals and requirements are now emerging for its use in the evaluation of their formulated products, especially in the European Union. However, despite its widespread use and extensive validation, the use of this assay for directly testing mixtures and formulated products has been questioned, which could lead to repeat testing using multiple animal models. As pesticide formulations are typically a specific complex blend of chemicals for use as aqueous-based dilutions, traditional vehicles prescribed for the LLNA may change the properties of these formulations leading to inaccurate test results and hazard identification.

View Article and Find Full Text PDF

There are currently no accepted regulatory models for assessing the potential of a substance to cause respiratory sensitization and allergy. In contrast, a number of models exist for the assessment of contact sensitization and allergic contact dermatitis (ACD). Research indicates that respiratory sensitizers may be identified through contact sensitization assays such as the local lymph node assay, although only a small subset of the compounds that yield positive results in these assays are actually respiratory sensitizers.

View Article and Find Full Text PDF

Stability in simulated gastric fluid has been suggested as a parameter for consideration in the allergenicity assessment of transgenic proteins. However, the relationship between the stability of proteins in simulated gastric fluid and allergenicity has been inconsistent among studies conducted with reference allergens and non-allergens. Differences in laboratory methods and data interpretation have been implicated as possible causes for conflicting study results.

View Article and Find Full Text PDF

Background: Specific IgG binding to diisocyanate-human serum albumin (HSA) has been proposed as an indicator of diisocyanate exposure. One residential study reported IgG binding to diisocyanate conjugates in 8% of residents living near a factory using toluene diisocyanate (TDI). Because comparable assays were not performed using individuals distant from such facilities, the significance of this finding is uncertain.

View Article and Find Full Text PDF

Cytokine profiling of local lymph node responses has been proposed as a simple test to identify chemicals, such as low molecular weight diisocyanates, that pose a significant risk of occupational asthma. Previously, we reported cytokine messenger RNA (mRNA) profiles for dinitrochlorobenzene (DNCB) and six isocyanates: toluene diisocyanate, diphenylmethane-4,4'-diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, isophorone diisocyanate, p-tolyl(mono)isocyanate, and meta-tetramethylene xylene diisocyanate. The present study was conducted to test the hypothesis that relative differences in the cytokine profile are predictive of relative differences in total serum immunoglobulin (Ig) E and respiratory responses to methacholine (Mch) following dermal exposure to the chemicals.

View Article and Find Full Text PDF

It has been reported that the repeated topical, nonoccluded application of acetone may modulate antibody production in mice, thus producing humoral immunosuppression. However, the evaporative loss expected following nonoccluded dermal application of acetone makes the systemic effect seem unlikely. This study was designed to investigate the immunotoxicity potential of acetone in mice following a more direct systemic route of dosing via drinking water for 28 days.

View Article and Find Full Text PDF

Evaluation of xenobiotic-induced changes in gene expression as a method to identify and classify potential toxicants is being pursued by industry and regulatory agencies worldwide. A workshop was held at the Research Triangle Park campus of the Environmental Protection Agency to discuss the current state-of-the-science of "immunotoxicogenomics" and to explore the potential role of genomics techniques for immunotoxicity testing. The genesis of the workshop was the current lack of widely accepted triggering criteria for Tier 1 immunotoxicity testing in the context of routine toxicity testing data, the realization that traditional screening methods would require an inordinate number of animals and are inadequate to handle the number of chemicals that may need to be screened (e.

View Article and Find Full Text PDF

We have previously demonstrated that adrenomedullin (AM) plays a critical role as an autocrine/paracrine tumor cell survival factor. We now present evidence that AM is an important regulator of mast cell (MC) function and that this modulation is potentially involved in tumor promotion. AM induced histamine or beta-hexosaminidase release from rat and human MCs through a receptor-independent pathway.

View Article and Find Full Text PDF

Acute and repeat dose inhalation studies have been an important part of the safety assessment of drugs, chemicals, and other products throughout the world for many years. It is known that damage to the respiratory tract can be triggered either by nonspecific irritation or by specific immune-mediated pathogenesis, and it is acknowledged that traditional inhalation studies are not designed to address fully the impact of the latter. It is also recognized that different types of immune-mediated responses can be triggered by different classes of compounds and that some immune reactions in the lung are life threatening.

View Article and Find Full Text PDF

Developmental and reproductive toxicology (DART) has routinely been a part of safety assessment. Attention is now focused on the effects of chemicals on the developing nervous and immune systems. This focus on developmental neurotoxicology (DNT) and developmental immunotoxicology (DIT) is based on the premise that children differ from adults in some aspects of their biology and, thus, may also differ in their responses to chemicals.

View Article and Find Full Text PDF

Human mast cells (huMC) increase surface expression of FcgammaRI (CD64) in response to IFNgamma. Subsequent receptor aggregation of FcgammaR1 using CD64-specific F(ab')(2) or antibody directed against FcgammaR1-bound IgG results in cell activation. Human mast cells may be observed degranulating in inflammation associated with autoimmune disease and where IFNgamma is produced.

View Article and Find Full Text PDF

Evaluating allergenicity of natural rubber latex (NRL) products is essential for the successful reduction of the consumer's exposure to potentially allergenic NRL proteins. We have developed an ELISA Inhibition method for the quantitation of extractable proteins from NRL products which has good sensitivity and specificity. The method utilizes rabbit anti-NRL protein serum as a detection mechanism.

View Article and Find Full Text PDF

Mast cells are known to participate in the induction of inflammation through interaction of antigen with specific IgE bound to the high affinity receptor for IgE (FcepsilonRI). Human mast cells, derived from CD34(+) hematopoietic precursors, not only express FcepsilonRI but also express high affinity receptors for IgG (FcgammaRI), the latter only after IFN-gamma exposure. Human mast cells that express FcgammaRI are activated following FcgammaRI aggregation, either using antibodies directed to the receptor or through IgG bound to the receptor.

View Article and Find Full Text PDF

Murine models provide a powerful tool in the investigation of latex allergy and the development of intervention strategies. The immune responses to protein allergens of mice and humans are similar but differences related to the roles of IgE and IgG must be recognized. Mice have been shown to mount a dose and time-dependent IgE response to latex proteins following topical, respiratory, and subcutaneous exposures.

View Article and Find Full Text PDF