Publications by authors named "Michael Widom"

Refractory high-entropy alloys (RHEAs) are promising high-temperature structural materials. Their large compositional space poses great design challenges for phase control and high strength-ductility synergy. The present research pioneers using integrated high-throughput machine learning with Monte Carlo simulations supplemented by ab initio calculations to effectively navigate phase selection and mechanical property predictions, developing single-phase ordered B2 aluminum-enriched RHEAs (Al-RHEAs) demonstrating high strength and ductility.

View Article and Find Full Text PDF

Chemical Short-Range Order (CSRO) has attracted recent attention from many researchers, creating intense debates about its impact on material properties. The challenges lie in confirming and quantifying CSRO, as its detection proves exceptionally demanding, contributing to conflicting data in the literature regarding its true effects on mechanical properties. Our work uses high-precision calorimetric data to unambiguously prove the existence and, coupled with atomistic simulations, quantify the type of CSRO.

View Article and Find Full Text PDF

Enantiospecific heterogeneous catalysis utilizes chiral surfaces to resolve enantiomers via structure sensitive surface chemistry. The catalyst design challenge is the identification of chiral surface structures that maximize enantiospecificity. Herein, we develop data driven models for the enantiospecificity of tartaric acid reactions on chiral Cu() surfaces.

View Article and Find Full Text PDF

Liquid state entropy formulas based on configurational probability distributions are examined for Lennard-Jones fluids across a range temperatures and densities. These formulas are based on expansions of the entropy in a series of n-body distribution functions. We focus on two special cases.

View Article and Find Full Text PDF

The vibrational entropy of a solid at finite temperature is investigated from the perspective of information theory. Ab initio molecular dynamics (AIMD) simulations generate ensembles of atomic configurations at finite temperature from which we obtain the -body distribution of atomic displacements, ρN. We calculate the information-theoretic entropy from the expectation value of lnρN.

View Article and Find Full Text PDF

Refractory high-entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy-design principles, a single-phase body-centered-cubic (BCC) CrMoNbV RHEA with high-temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys.

View Article and Find Full Text PDF

Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent "high-entropy alloys (HEAs)" based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations.

View Article and Find Full Text PDF

Developing affordable and light high-temperature materials alternative to Ni-base superalloys has significantly increased the efforts in designing advanced ferritic superalloys. However, currently developed ferritic superalloys still exhibit low high-temperature strengths, which limits their usage. Here we use a CALPHAD-based high-throughput computational method to design light, strong, and low-cost high-entropy alloys for elevated-temperature applications.

View Article and Find Full Text PDF

Mechanisms for the spontaneous transformation of achiral chemical systems into states of enantiomeric purity have important ramifications in modern pharmacology and potential relevance to the origins of homochirality in life on Earth. Such mechanisms for enantiopurification are needed for production of chiral pharmaceuticals and other bioactive compounds. Previously proposed chemical mechanisms leading from achiral systems to near homochirality are initiated by a symmetry-breaking step resulting in a minor excess of one enantiomer via statistical fluctuations in enantiomer concentrations.

View Article and Find Full Text PDF

Binary silicon boride SiB has been reported to occur in two forms, as disordered and nonstoichiometric α-SiB , which relates to the α-rhombohedral phase of boron, and as strictly ordered and stoichiometric β-SiB. Similar to other boron-rich icosahedral solids, these SiB phases represent potentially interesting refractory materials. However, their thermal stability, formation conditions, and thermodynamic relation are poorly understood.

View Article and Find Full Text PDF

The information required to specify a liquid structure equals, in suitable units, its thermodynamic entropy. Hence, an expansion of the entropy in terms of multi-particle correlation functions can be interpreted as a hierarchy of information measures. Utilizing first principles molecular dynamics simulations, we simulate the structure of liquid aluminum to obtain its density, pair and triplet correlation functions, allowing us to approximate the experimentally measured entropy and relate the excess entropy to the information content of the correlation functions.

View Article and Find Full Text PDF

The properties of materials change, sometimes catastrophically, as alloying elements and impurities accumulate preferentially at grain boundaries. Studies of bicrystals show that regular atomic patterns often arise as a result of this solute segregation at high-symmetry boundaries, but it is not known whether superstructures exist at general grain boundaries in polycrystals. In bismuth-doped polycrystalline nickel, we found that ordered, segregation-induced grain boundary superstructures occur at randomly selected general grain boundaries, and that these reconstructions are driven by the orientation of the terminating grain surfaces rather than by lattice matching between grains.

View Article and Find Full Text PDF

We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [Phys. Rev.

View Article and Find Full Text PDF

A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large distances from the contact line.

View Article and Find Full Text PDF

Kinetic Monte Carlo on coarse-grained systems, such as nucleic acid secondary structure, is advantageous for being able to access behavior at long time scales, even minutes or hours. Transition rates between coarse-grained states depend upon intermediate barriers, which are not directly simulated. We propose an Arrhenius rate model and an intermediate energy model that incorporates the effects of the barrier between simulated states without enlarging the state space itself.

View Article and Find Full Text PDF

Coarse-grained elastic network models elucidate the fluctuation dynamics of proteins around their native conformations. Low-frequency collective motions derived by simplified normal mode analysis are usually involved in biological function, and these motions often possess noteworthy symmetries related to the overall shape of the molecule. Here, insights into these motions and their frequencies are sought by considering continuum models with appropriate symmetry and boundary conditions to approximately represent the true atomistic molecular structure.

View Article and Find Full Text PDF

The Saffman-Taylor viscous fingering problem is investigated for the displacement of a non-Newtonian fluid by a Newtonian one in a radial Hele-Shaw cell. We execute a mode-coupling approach to the problem and examine the morphology of the fluid-fluid interface in the weak shear limit. A differential equation describing the early nonlinear evolution of the interface modes is derived in detail.

View Article and Find Full Text PDF