Publications by authors named "Michael Welsh"

The mechanisms controlling blood vessel formation during early embryonal development have only partly been elucidated. Shb is an adaptor protein previously implicated in the angiogenic response to vascular endothelial growth factor (VEGF). To elucidate a possible role of Shb in embryonic vascular development, wild-type and SH2 domain mutated (R522K) Shb were overexpressed in murine embryonic stem (ES) cells.

View Article and Find Full Text PDF

Membranoproliferative glomerulonephritis type II (MPGN II) is a rare disease characterized by the deposition of abnormal electron-dense material within the glomerular basement membrane of the kidney and often within Bruch's membrane in the eye. The diagnosis is made in most patients between the ages of 5 and 15 yr, and within 10 yr, approximately half progress to end-stage renal disease, occasionally with the late comorbidity of visual impairment. The pathophysiologic basis of MPGN II is associated with the uncontrolled systemic activation of the alternative pathway (AP) of the complement cascade.

View Article and Find Full Text PDF

Submucosal glands are abundant (approximately 1 gland/mm2) secretory structures in the tracheobronchial airways of the human lung. Because submucosal glands express antibacterial proteins, it has been proposed that they contribute to lung defense. However, this concept is challenged by the fact that mice do not have submucosal glands in their bronchial airways, yet are quite resistant to bacterial lung infection.

View Article and Find Full Text PDF

Adeno-associated viruses (AAVs) such as AAV5 that transduce airway epithelia from the apical surface are attractive vectors for gene transfer in cystic fibrosis (CF). However, their utility in CF has been limited because packaging of the insert becomes inefficient when its length exceeds approximately 4,900-5,000 bp. To partially circumvent this size constraint, we previously developed a CF transmembrane conductance regulator (CFTR) transgene that deleted a portion of the R domain (CFTRDeltaR).

View Article and Find Full Text PDF

The environmental pollutant cadmium affects human health, with the kidney being a primary target. In addition to proximal tubules, glomeruli and their contractile mesangial cells have also been identified as targets of cadmium nephrotoxicity. Glomerular contraction is thought to contribute to reduced glomerular filtration, a characteristic of cadmium nephrotoxicity.

View Article and Find Full Text PDF

ADP interacts with the nucleotide-binding domains (NBDs) of the cystic fibrosis transmembrane conductance regulator (CFTR) to inhibit its Cl- channel activity. Because CFTR NBD2 has reversible adenylate kinase activity (ATP + AMP<==> ADP + ADP) that gates the channel, we asked whether ADP might inhibit current through this enzymatic activity. In adenylate kinases, binding of the two ADP molecules is cooperative.

View Article and Find Full Text PDF

ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding.

View Article and Find Full Text PDF

Studies of tuberculosis have suggested a shift in dominance from a T helper type 1 (Th1) towards a Th2 immune response that is associated with suppressed cell-mediated immune (CMI) responses and increased humoral responses as the disease progresses. In this study a natural host disease model was used to investigate the balance of the evolving immune response towards Mycobacterium bovis infection in cattle with respect to pathogenesis. Cytokine analysis of CD4 T-cell clones derived from M.

View Article and Find Full Text PDF

Compounds that enhance either the function or biosynthetic processing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel may be of value in developing new treatments for cystic fibrosis (CF). Previous studies suggested that the herbal extract curcumin might affect the processing of a common CF mutant, CFTR-DeltaF508. Here, we tested the hypothesis that curcumin influences channel function.

View Article and Find Full Text PDF

Background & Aims: Visceral mechanoreceptors are critical for perceived sensations and autonomic reflex control of gastrointestinal function. However, the molecular mechanisms underlying visceral mechanosensation remain poorly defined. Degenerin/epithelial Na+ channel (DEG/ENaC) family ion channels are candidate mechanosensory molecules, and we hypothesized that they influence visceral mechanosensation.

View Article and Find Full Text PDF

Exposure to the environmental toxicant arsenic is reported to produce a variety of effects including disruption of signal transduction pathways, cell proliferation, and apoptosis. This suggests that arsenite may not have specific targets but rather extremely broad effects. The present study was designed to test the hypothesis that arsenite alters signaling involved in focal adhesion structure and function in cultured myoblasts.

View Article and Find Full Text PDF

Background: SB-236057 is a potent skeletal teratogen in rodents and rabbits, producing axial and posterior somite malformations in cultured rat embryos. The compound shares some structural similarity to cyclopamine.

Methods: M13 phage display was used to identify amino acid motifs with binding affinity to SB-236057.

View Article and Find Full Text PDF

Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined.

View Article and Find Full Text PDF

The acid-sensing ion channel-3 (ASIC3) is a degenerin/epithelial sodium channel expressed in the peripheral nervous system. Previous studies indicate that it participates in the response to mechanical and painful stimuli, perhaps contributing to mechanoreceptor and/or H+ -gated nociceptor function. ASIC3 subunits contain intracellular N and C termini that may control channel localization and function.

View Article and Find Full Text PDF

Background & Aims: Heat shock protein (Hsp) 27 regulates actin cytoskeletal dynamics, and overexpression of Hsp27 in fibroblasts protects against stress in a phosphorylation-dependent manner. Induction of Hsps occurs in acute pancreatitis, but Hsp27 has not been ascribed a specific role. To examine whether Hsp27 would ameliorate acute pancreatitis, we generated transgenic mice overexpressing human Hsp27 (huHsp27) or Hsp27 with the phosphorylatable residues Ser(15,78,82) mutated to aspartic acid (huHsp27-3D) to mimic phosphorylation or to alanine (huHsp27-3A), which is nonphosphorylatable.

View Article and Find Full Text PDF

Hallmarks of the inflammatory process in Type I diabetes are macrophage activation, local release of beta-cell-toxic cytokines and infiltration of cytotoxic T lymphocytes. We have observed recently that mice overexpressing active FRK (fyn-related kinase)/RAK (previously named GTK/Bsk/IYK, where GTK stands for gut tyrosine kinase, Bsk for beta-cell Src-homology kinase and IYK for intestinal tyrosine kinase) in beta-cells exhibit increased susceptibility to beta-cell-toxic events, and therefore, we now attempt to find a more precise role for FRK/RAK in these processes. Phosphopeptide mapping of baculovirus-produced mouse FRK/RAK revealed an autophosphorylation pattern compatible with Tyr-394 being the main site.

View Article and Find Full Text PDF

Acid-sensing ion channel (ASIC) 1a subunit is expressed in synapses of central neurons where it contributes to synaptic plasticity. However, whether these channels can conduct Ca(2+) and thereby raise the cytosolic Ca(2+) concentration, [Ca(2+)](c), and possibly alter neuronal physiology has been uncertain. We found that extracellular acidosis opened ASIC1a channels, which provided a pathway for Ca(2+) entry and elevated [Ca(2+)](c) in wild-type, but not ASIC1(-/-), hippocampal neurons.

View Article and Find Full Text PDF

In rodent whole embryo culture (WEC), finding vehicles for non-aqueous-soluble compounds has been problematic due to developmental toxicity associated with many solvents. The purpose of this study was to identify alternative vehicles for insoluble compounds. In WEC, we evaluated carrier solutions containing bovine serum albumin (BSA) and glycerol as well as the solvents, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and ethanol, for relative teratogenicity and delivery of the insoluble teratogen, all-trans retinoic acid (RA).

View Article and Find Full Text PDF

Previous studies have shown that the adaptor protein Shb is involved in receptor tyrosine kinase signaling. In this study, we demonstrate that Shb is phosphorylated in an Src-dependent manner upon vascular endothelial growth factor (VEGF) stimulation using porcine aortic endothelial cells expressing the human VEGF receptor 2 (VEGFR-2) (KDR). In co-immunoprecipitation experiments, we could detect an interaction between Shb and the VEGFR-2 in human telomerase-immortalized microvascular endothelial cells.

View Article and Find Full Text PDF

The acid-sensing ion channel 1a (ASIC1a) is abundantly expressed in the amygdala complex and other brain regions associated with fear. Studies of mice with a disrupted ASIC1 gene suggested that ASIC1a may contribute to learned fear. To test this hypothesis, we generated mice overexpressing human ASIC1a by using the pan-neuronal synapsin 1 promoter.

View Article and Find Full Text PDF

Mammalian airways protect themselves from bacterial infection by using multiple defense mechanisms including antimicrobial peptides, mucociliary clearance, and phagocytic cells. We asked whether airways might also target a key bacterial cell-cell communication system, quorum-sensing. The opportunistic pathogen Pseudomonas aeruginosa uses two quorum-sensing molecules, N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) and N-butanoyl-l-homoserine lactone (C4-HSL), to control production of extracellular virulence factors and biofilm formation.

View Article and Find Full Text PDF

Hippocampal neurons express subunits of the acid-sensing ion channel (ASIC1 and ASIC2) and exhibit large cation currents that are transiently activated by acidic extracellular solutions. Earlier work indicated that ASIC1 contributed to the current in these neurons and suggested its importance for normal behavior. However, the specific contribution of ASIC1 and ASIC2 subunits to acid-evoked currents in hippocampal neurons remained uncertain.

View Article and Find Full Text PDF

Human papillomavirus type 16 (HPV16) infection is a major risk factor for the development of squamous cell cancers of the cervix and of the head and neck. A major barrier to understanding the progression from initial infection to cancer has been the lack of in vitro models that allow infection, replication, and persistence of the viral genome as an episome in differentiated epithelial cells. To overcome this barrier, we designed an adenoviral delivery vector that contained a full HPV16 genome flanked by LoxP homologous recombination sites and a fluorescent reporter that was expressed only after the HPV genome was excised by Cre recombinase.

View Article and Find Full Text PDF

The airway epithelium represents an important barrier between the host and the environment. It is a first site of contact with pathogens, particulates, and other stimuli, and has evolved the means to dynamically respond to these challenges. In an effort to define the transcript profile of airway epithelia, we created and sequenced cDNA libraries from cystic fibrosis (CF) and non-CF epithelia and from human lung tissue.

View Article and Find Full Text PDF