Introduction: A newly developed clinical organ-targeted Positron Emission Tomography (PET) system (also known as Radialis PET) is tested with a set of standardized and custom tests previously used to evaluate the performance of Positron Emission Mammography (PEM) systems.
Methods: Imaging characteristics impacting standardized uptake value (SUV) and detectability of small lesions, namely spatial resolution, linearity, uniformity, and recovery coefficients, are evaluated.
Results: In-plane spatial resolution was measured as 2.
Purpose To investigate the feasibility of low-dose positron emission mammography (PEM) concurrently to MRI to identify breast cancer and determine its local extent. Materials and Methods In this research ethics board-approved prospective study, participants newly diagnosed with breast cancer with concurrent breast MRI acquisitions were assigned independently of breast density, tumor size, and histopathologic cancer subtype to undergo low-dose PEM with up to 185 MBq of fluorine 18-labeled fluorodeoxyglucose (F-FDG). Two breast radiologists, unaware of the cancer location, reviewed PEM images taken 1 and 4 hours following F-FDG injection.
View Article and Find Full Text PDFThe aim of this study is to evaluate the performance of the Radialis organ-targeted positron emission tomography (PET) Camera with standardized tests and through assessment of clinical-imaging results. Sensitivity, count-rate performance, and spatial resolution were evaluated according to the National Electrical Manufacturers Association (NEMA) NU-4 standards, with necessary modifications to accommodate the planar detector design. The detectability of small objects was shown with micro hotspot phantom images.
View Article and Find Full Text PDFbiomarker abnormalities provide measures to monitor therapeutic interventions targeting amyloid-β pathology as well as its effects on downstream processes associated with Alzheimer's disease pathophysiology. Here, we applied an longitudinal study design combined with imaging and cerebrospinal fluid biomarkers, mirroring those used in human clinical trials to assess the efficacy of a novel brain-penetrating anti-amyloid fusion protein treatment in the McGill-R-Thy1-APP transgenic rat model. The bi-functional fusion protein consisted of a blood-brain barrier crossing single domain antibody (FC5) fused to an amyloid-β oligomer-binding peptide (ABP) via Fc fragment of mouse IgG (FC5-mFc2a-ABP).
View Article and Find Full Text PDFBackground: Repetitive transcranial magnetic stimulation (rTMS) at certain frequencies increases thresholds for motor-evoked potentials and phosphenes following stimulation of cortex. Consequently rTMS is often assumed to introduce a "virtual lesion" in stimulated brain regions, with correspondingly diminished behavioral performance.
Methodology/principal Findings: Here we investigated the effects of rTMS to visual cortex on subjects' ability to perform visual psychophysical tasks.