Precise spatio-temporal expression of genes in organogenesis is regulated by the coordinated interplay of DNA elements such as promoter and enhancers present in the regulatory region of a given locus. POU1F1 transcription factor plays a crucial role in the development of somatotrophs, lactotrophs and thyrotrophs in the anterior pituitary gland, and in maintaining high expression of growth hormone, prolactin and TSH. In mouse, expression of is controlled by a region fenced by two CTCF sites, containing 5 upstream enhancer elements, designated E-A (5' to 3').
View Article and Find Full Text PDFThe molecular evolution of pituitary growth hormone and prolactin in mammals shows two unusual features: episodes of markedly accelerated evolution and, in some species, complex families of related proteins expressed in placenta and resulting from multiple gene duplications. Explanations of these phenomena in terms of physiological adaptations seem unconvincing. Here, I propose an alternative explanation, namely that these evolutionary features reflect the use of the hormones (and their receptors) as viral receptors.
View Article and Find Full Text PDFIn mammals, the large IGF-I gene comprises 6 exons, which are subject to alternative splicing. All transcripts contain exons 3 and 4, encoding mature IGF-I, but the other exons are included in various combinations, giving at least 6 possible mature mRNAs. At the 5' end, exons 1 and 2 are spliced alternatively to exon 3, giving different leader/signal sequences.
View Article and Find Full Text PDFGen Comp Endocrinol
December 2018
Pituitary prolactin (PRL) shows an episodic pattern of evolution in mammals, with a slow underlying rate (near stasis) and periods of rapid change in some groups. PRL evolution in bats, the second most speciose mammalian order, has not previously been studied, and is examined here. Slow basal evolution of PRL is seen in some bats, particularly megabats, but in most microbat groups evolution of PRL is more rapid.
View Article and Find Full Text PDFThe POU1F1 (Pit-1) transcription factor is important in regulating expression of growth hormone, prolactin and TSH β-subunit, and controlling development of the anterior pituitary cells in which these hormones are produced. POU1F1 is a conserved protein comprising three main domains, an N-terminal transcription activation domain (TAD), a POU-specific domain and a C-terminal homeodomain. Within the TAD, a β-domain can be inserted by alternative splicing, giving an extended 'β-variant' with altered properties.
View Article and Find Full Text PDFIn primates, the unigenic growth hormone (GH) locus of prosimians expressed primarily in the anterior pituitary, evolved by gene duplications, independently in New World Monkeys (NWM) and Old World Monkeys (OWMs)/apes, to give complex clusters of genes expressed in the pituitary and placenta. In human and chimpanzee, the GH locus comprises five genes, GH-N being expressed as pituitary GH, whereas GH-V (placental GH) and CSHs (chorionic somatomammotropins) are expressed (in human and probably chimpanzee) in the placenta; the CSHs comprise CSH-A, CSH-B and the aberrant CSH-L (possibly a pseudogene) in human, and CSH-A1, CSH-A2 and CSH-B in chimpanzee. Here, the GH locus in two additional great apes, gorilla (Gorilla gorilla gorilla) and orangutan (Pongo abelii), is shown to contain six and four GH-like genes, respectively.
View Article and Find Full Text PDFGrowth Horm IGF Res
August 2015
Previous work has shown that the evolution of both insulin-like growth factor 1 (IGF1) and insulin shows an episode of accelerated change on the branch leading to New World Monkeys (NWM). Here the possibility that this is accompanied by a corresponding episode of accelerated evolution of IGF1 receptor (IGF1R), insulin receptor (IR) and/or IGF binding proteins (IGFBPs) was investigated. Analysis of receptor sequences from a range of primates and some non-primate mammals showed that accelerated evolution did indeed occur on this branch in the case of IGF1R and IR, but not for the similar insulin receptor-related receptor (IRRR) which does not bind insulin or IGF1.
View Article and Find Full Text PDFAmong vertebrates the neurohypophysial hormones show considerable variation. However, in eutherian mammals they have been considered rather conserved, with arginine vasopressin (AVP) and oxytocin (OT) in all species except pig and some relatives, where lysine vasopressin replaces AVP. The availability of genomic data for a wide range of mammals makes it possible to assess whether these peptides and their precursors may be more variable in Eutheria than previously suspected.
View Article and Find Full Text PDFIn most mammals the growth hormone (GH) locus comprises a single gene expressed primarily in the anterior pituitary gland. However, in higher primates multiple duplications of the GH gene gave rise to a complex locus containing several genes. In man this locus comprises five genes, including GH-N (expressed in pituitary) and four genes expressed in the placenta, but in other species the number and organization of these genes vary.
View Article and Find Full Text PDFPregnancy is a complex physiological condition, and the growth hormone (GH)-related hormones produced in the placenta, which emerged during the evolution of primates, are thought to play an important metabolic role in pregnancy that is not yet fully understood. The aim of this study was to identify the genes and transcription products of the GH family in baboon (Papio hamadryas) and to assess these in relation to the evolution of this gene family. GH-related transcripts were amplified using total RNA from placental tissue, by reverse transcription coupled to polymerase chain reaction (RT-PCR).
View Article and Find Full Text PDFPituitary prolactin shows an episodic pattern of molecular evolution, with occasional short bursts of rapid change imposed on a generally rather slow evolutionary rate. In mammals, episodes of rapid change occurred in the evolution of primates, cetartiodactyls, rodents and the elephant. The bursts of rapid evolution in cetartiodactyls and rodents were followed by duplications of the prolactin gene that gave rise to large families of prolactin-related proteins including placental lactogens, while in primates the burst was followed by corresponding duplications of the related GH gene.
View Article and Find Full Text PDFThe insulin-like growth factors (IGF-I and IGF-II) and insulin are related proteins that play an important role in regulation of metabolism and growth. In mammals these proteins are generally strongly conserved, though the sequence of insulin underwent periods of rapid change during the evolution of hystricomorph rodents and new-world monkeys (NWM). The availability of genomic sequence information for a number of mammals provides gene sequences for insulin and IGF precursors from several new species, and this has been used here to study the evolution of these proteins in primates.
View Article and Find Full Text PDFMammalian growth hormone (GH) sequences have been shown previously to display episodic evolution: the sequence is generally strongly conserved but on at least two occasions during mammalian evolution (on lineages leading to higher primates and ruminants) bursts of rapid evolution occurred. However, the number of mammalian orders studied previously has been relatively limited, and the availability of sequence data via mammalian genome projects provides the potential for extending the range of GH gene sequences examined. Complete or nearly complete GH gene sequences for six mammalian species for which no data were previously available have been extracted from the genome databases-Dasypus novemcinctus (nine-banded armadillo), Erinaceus europaeus (western European hedgehog), Myotis lucifugus (little brown bat), Procavia capensis (cape rock hyrax), Sorex araneus (European shrew), Spermophilus tridecemlineatus (13-lined ground squirrel).
View Article and Find Full Text PDFThe GH gene cluster in marmoset, Callithrix jacchus, comprises eight GH-like genes and pseudogenes and appears to have arisen as a consequence of gene duplications occurring independently of those leading to the human GH gene cluster. We report here the complete sequence of the marmoset GH gene locus, including the intergenic regions and 5' and 3' flanking sequence, and a study of the multiple GH-like genes of an additional New World monkey (NWM), the white-fronted capuchin, Cebus albifrons. The marmoset sequence includes 945 nucleotides (nt) of 5' flanking sequence and 1596 nt of 3' flanking sequence that are "unique"; between these are eight repeat units, including the eight GH genes/pseudogenes.
View Article and Find Full Text PDFGen Comp Endocrinol
April 2006
In mammals, pituitary growth hormone (GH) is usually encoded by a single gene, but in some caprine ruminants there are two GH genes, and higher primates have a cluster of at least 5 GH-like genes. We have previously shown that in several artiodactyls (chevrotain, giraffe, and hippopotamus) there are two GH gene sequences, differing by 5-21 nucleotides (nt), but whether these arise from two distinct gene loci is unclear. We report here that in the red deer (Cervus elaphus) also there are two main GH gene sequences (designated A and B) differing at about 23 nt.
View Article and Find Full Text PDFJ Mol Endocrinol
December 2005
Divergence of proteins in signaling pathways requires ligand and receptor coevolution to maintain or improve binding affinity and/or specificity. In this paper we show a clear case of coevolution between the prolactin (PRL) gene and its receptor (prolactin receptor, PRLR) in mammals. First we observed episodic evolution of the extracellular and intracellular domains of the PRLR, which is closely consistent with that seen in PRL.
View Article and Find Full Text PDFIn mammals growth hormone (GH) is generally a strongly conserved protein, reflecting a slow rate of molecular evolution. However, during primate and artiodactyl evolution episodes of rapid change occurred, so that the GHs of higher primates and ruminants differ markedly from those of other mammals. To extend knowledge of GH evolution in Cetartiodactyla (Artiodactyla plus Cetacea) we have previously characterized GH genes from several members of this group, including the common dolphin.
View Article and Find Full Text PDFPituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus).
View Article and Find Full Text PDFThe sequence of growth hormone (GH) is generally strongly conserved in mammals, but episodes of rapid change occurred during the evolution of primates and artiodactyls, when the rate of GH evolution apparently increased substantially. As a result the sequences of higher primate and ruminant GHs differ markedly from sequences of other mammalian GHs. In order to increase knowledge of GH evolution in Cetartiodactyla (Artiodactyla plus Cetacea) we have cloned and characterized GH genes from camel (Camelus dromedarius), hippopotamus (Hippopotamus amphibius), and giraffe (Giraffa camelopardalis), using genomic DNA and a polymerase chain reaction technique.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
July 2002
Growth hormone, prolactin, the fish hormone, somatolactin, and related mammalian placental hormones, including placental lactogen, form a family of polypeptide hormones that share a common tertiary structure. They produce their biological effects by interacting with and dimerizing specific single transmembrane-domain receptors. The receptors belong to a superfamily of cytokine receptors with no intrinsic tyrosine kinase, which use the Jak-Stat cascade as a major signalling pathway.
View Article and Find Full Text PDFThe sequence of growth hormone (GH) is generally strongly conserved in mammals, but episodes of rapid change occurred during the evolution of primates and artiodactyls, when the rate of GH evolution apparently increased at least 50-fold. As a result, the sequences of human and ruminant GHs differ substantially from those of other non-primate GHs. Recent molecular studies have suggested that cetaceans are closely related to artiodactyls and may be deeply nested within the artiodactyl phylogenetic tree.
View Article and Find Full Text PDF