Publications by authors named "Michael W. Reimann"

Neurons are thought to act as parts of assemblies with strong internal excitatory connectivity. Conversely, inhibition is often reduced to blanket inhibition with no targeting specificity. We analyzed the structure of excitation and inhibition in the MICrONS $mm^{3}$ dataset, an electron microscopic reconstruction of a piece of cortical tissue.

View Article and Find Full Text PDF

The CA1 region of the hippocampus is one of the most studied regions of the rodent brain, thought to play an important role in cognitive functions such as memory and spatial navigation. Despite a wealth of experimental data on its structure and function, it has been challenging to integrate information obtained from diverse experimental approaches. To address this challenge, we present a community-based, full-scale in silico model of the rat CA1 that integrates a broad range of experimental data, from synapse to network, including the reconstruction of its principal afferents, the Schaffer collaterals, and a model of the effects that acetylcholine has on the system.

View Article and Find Full Text PDF

Recent developments in experimental techniques have enabled simultaneous recordings from thousands of neurons, enabling the study of functional cell assemblies. However, determining the patterns of synaptic connectivity giving rise to these assemblies remains challenging. To address this, we developed a complementary, simulation-based approach, using a detailed, large-scale cortical network model.

View Article and Find Full Text PDF

The brain is composed of several anatomically clearly separated structures. This parcellation is often extended into the isocortex, based on anatomical, physiological, or functional differences. Here, we derive a parcellation scheme based purely on the spatial structure of long-range synaptic connections within the cortex.

View Article and Find Full Text PDF

In motor-related brain regions, movement intention has been successfully decoded from in-vivo spike train by isolating a lower-dimension manifold that the high-dimensional spiking activity is constrained to. The mechanism enforcing this constraint remains unclear, although it has been hypothesized to be implemented by the connectivity of the sampled neurons. We test this idea and explore the interactions between local synaptic connectivity and its ability to encode information in a lower dimensional manifold through simulations of a detailed microcircuit model with realistic sources of noise.

View Article and Find Full Text PDF

Voltage-sensitive dye imaging (VSDI) is a powerful technique for interrogating membrane potential dynamics in assemblies of cortical neurons, but with effective resolution limits that confound interpretation. To address this limitation, we developed an in silico model of VSDI in a biologically faithful digital reconstruction of rodent neocortical microcircuitry. Using this model, we extend previous experimental observations regarding the cellular origins of VSDI, finding that the signal is driven primarily by neurons in layers 2/3 and 5, and that VSDI measurements do not capture individual spikes.

View Article and Find Full Text PDF

The anatomy and physiology of monosynaptic connections in rodent hippocampal CA1 have been extensively studied in recent decades. Yet, the resulting knowledge remains disparate and difficult to reconcile. Here, we present a data-driven approach to integrate the current state-of-the-art knowledge on the synaptic anatomy and physiology of rodent hippocampal CA1, including axo-dendritic innervation patterns, number of synapses per connection, quantal conductances, neurotransmitter release probability, and short-term plasticity into a single coherent resource.

View Article and Find Full Text PDF

Synaptic connectivity between neocortical neurons is highly structured. The network structure of synaptic connectivity includes first-order properties that can be described by pairwise statistics, such as strengths of connections between different neuron types and distance-dependent connectivity, and higher order properties, such as an abundance of cliques of all-to-all connected neurons. The relative impact of first- and higher order structure on emergent cortical network activity is unknown.

View Article and Find Full Text PDF

In connectomics, the study of the network structure of connected neurons, great advances are being made on two different scales: that of macro- and meso-scale connectomics, studying the connectivity between populations of neurons, and that of micro-scale connectomics, studying connectivity between individual neurons. We combine these two complementary views of connectomics to build a first draft statistical model of the micro-connectome of a whole mouse neocortex based on available data on region-to-region connectivity and individual whole-brain axon reconstructions. This process reveals a targeting principle that allows us to predict the innervation logic of individual axons from meso-scale data.

View Article and Find Full Text PDF

Typical responses of cortical neurons to identical sensory stimuli appear highly variable. It has thus been proposed that the cortex primarily uses a rate code. However, other studies have argued for spike-time coding under certain conditions.

View Article and Find Full Text PDF

The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity.

View Article and Find Full Text PDF

Synaptic connectivity between neurons is naturally constrained by the anatomical overlap of neuronal arbors, the space on the axon available for synapses, and by physiological mechanisms that form synapses at a subset of potential synapse locations. What is not known is how these constraints impact emergent connectivity in a circuit with diverse morphologies. We investigated the role of morphological diversity within and across neuronal types on emergent connectivity in a model of neocortical microcircuitry.

View Article and Find Full Text PDF

Uncovering structural regularities and architectural topologies of cortical circuitry is vital for understanding neural computations. Recently, an experimentally constrained algorithm generated a dense network reconstruction of a ∼0.3-mm volume from juvenile rat somatosensory neocortex, comprising ∼31,000 cells and ∼36 million synapses.

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

Experimentally mapping synaptic connections, in terms of the numbers and locations of their synapses and estimating connection probabilities, is still not a tractable task, even for small volumes of tissue. In fact, the six layers of the neocortex contain thousands of unique types of synaptic connections between the many different types of neurons, of which only a handful have been characterized experimentally. Here we present a theoretical framework and a data-driven algorithmic strategy to digitally reconstruct the complete synaptic connectivity between the different types of neurons in a small well-defined volume of tissue-the micro-scale connectome of a neural microcircuit.

View Article and Find Full Text PDF

Unlabelled: We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.

View Article and Find Full Text PDF

Brain activity generates extracellular voltage fluctuations recorded as local field potentials (LFPs). It is known that the relevant microvariables, the ionic currents across membranes, jointly generate the macrovariables, the extracellular voltage, but neither the detailed biophysical knowledge nor the required computational power have been available to model these processes. We simulated the LFP in a model of the rodent neocortical column composed of >12,000 reconstructed, multicompartmental, and spiking cortical layer 4 and 5 pyramidal neurons and basket cells, including five million dendritic and somatic compartments with voltage- and ion-dependent currents, realistic connectivity, and probabilistic AMPA, NMDA, and GABA synapses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7pprsg0uuinbmigcd6i6haeb0mchvol8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once