IEEE/ACM Trans Comput Biol Bioinform
August 2019
Parameter estimation in discrete or continuous deterministic cell cycle models is challenging for several reasons, including the nature of what can be observed, and the accuracy and quantity of those observations. The challenge is even greater for stochastic models, where the number of simulations and amount of empirical data must be even larger to obtain statistically valid parameter estimates. The two main contributions of this work are (1) stochastic model parameter estimation based on directly matching multivariate probability distributions, and (2) a new quasi-Newton algorithm class QNSTOP for stochastic optimization problems.
View Article and Find Full Text PDFThe following two-stage approach to learning from dissimilarity data is described: (1) embed both labeled and unlabeled objects in a Euclidean space; then (2) train a classifier on the labeled objects. The use of linear discriminant analysis for (2), which naturally invites the use of classical multidimensional scaling for (1), is emphasized. The choice of the dimension of the Euclidean space in (1) is a model selection problem; too few or too many dimensions can degrade classifier performance.
View Article and Find Full Text PDFBy applying time-domain filters to time-of-flight (TOF) mass spectrometry signals, we have simultaneously smoothed and narrowed spectra resulting in improved resolution and increased signal-to-noise ratios. This filtering procedure has an advantage over detailed curve fitting of spectra in the case of large dense spectra, when neither the location nor the number of mass peaks is known a priori. This time series method is directly applicable in the time lag optimization range, where point density per peak is constant.
View Article and Find Full Text PDFPurpose: We recently showed that protein expression profiling of serum using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) has potential as a diagnostic approach for detection of prostate cancer. As a parallel effort, we have been pursuing the identification of the protein(s) comprising the individual discriminatory "peaks" and evaluating their utility as potential biomarkers for prostate disease.
Experimental Design: We employed liquid chromatography, gel electrophoresis and tandem mass spectroscopy to isolate and identify a protein that correlates with observed SELDI-TOF MS mass/charge (m/z) values.
Background: Measurement of peptide/protein concentrations in biological samples for biomarker discovery commonly uses high-sensitivity mass spectrometers with a surface-processing procedure to concentrate the important peptides. These time-of-flight (TOF) instruments typically have low mass resolution and considerable electronic noise associated with their detectors. The net result is unnecessary overlapping of peaks, apparent mass jitter, and difficulty in distinguishing mass peaks from background noise.
View Article and Find Full Text PDF