mutations are the major cause of Meckel-Gruber syndrome. TMEM67 is involved in both ciliary transition zone assembly, and non-canonical Wnt signaling mediated by its extracellular domain. How TMEM67 performs these two separate functions is not known.
View Article and Find Full Text PDFIn humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed.
View Article and Find Full Text PDFMotile and non-motile cilia play critical roles in mammalian development and health. These organelles are composed of a 1000 or more unique proteins, but their assembly depends entirely on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). In mammals, malfunction of non-motile cilia due to IFT dysfunction results in complex developmental phenotypes that affect most organs.
View Article and Find Full Text PDFMotile and non-motile cilia are critical to mammalian development and health. Assembly of these organelles depends on proteins synthesized in the cell body and transported into the cilium by intraflagellar transport (IFT). A series of human and mouse variants were studied to understand the function of this IFT subunit.
View Article and Find Full Text PDFThe Hedgehog pathway, critical to vertebrate development, is organized in primary cilia. Activation of signaling causes the Hedgehog receptor Ptch1 to exit cilia, allowing a second receptor, Smo, to accumulate in cilia and activate the downstream steps of the pathway. Mechanisms regulating the dynamics of these receptors are unknown, but the ubiquitination of Smo regulates its interaction with the intraflagellar transport system to control ciliary levels.
View Article and Find Full Text PDFPrimary cilia are sensory organelles present on most vertebrate cells and are critical for development and health. Ciliary dysfunction is associated with a large class of human pathologies collectively known as ciliopathies. These include cystic kidneys, blindness, obesity, skeletal malformations, and other organ anomalies.
View Article and Find Full Text PDFIn the absence of Hedgehog ligand, patched-1 (Ptch1) localizes to cilia and prevents ciliary accumulation and activation of smoothened (Smo). Upon ligand binding, Ptch1 is removed from cilia, and Smo is derepressed and accumulates in cilia where it activates signaling. The mechanisms regulating these dynamic movements are not well understood, but defects in intraflagellar transport components, including Ift27 and the BBSome, cause Smo to accumulate in cilia without pathway activation.
View Article and Find Full Text PDFThe T cell immune synapse is a site of intense vesicular trafficking. Here we show that the golgin GMAP210, known to capture vesicles and organize membrane traffic at the Golgi, is involved in the vesicular transport of LAT to the immune synapse. Upon activation, more GMAP210 interact with LAT-containing vesicles and go together with LAT to the immune synapse.
View Article and Find Full Text PDFThe retinal disease gene peripherin 2 (PRPH2) is essential for the formation of photoreceptor outer segments (OSs), where it functions in oligomers with and without its homologue ROM1. However, the precise role of these proteins in OS morphogenesis is not understood. By utilizing a knock-in mouse expressing a chimeric protein comprised of the body of Rom1 and the C-terminus of Prph2 (termed RRCT), we find that the Prph2 C-terminus is necessary and sufficient for the initiation of OSs, while OS maturation requires the body of Prph2 and associated large oligomers.
View Article and Find Full Text PDFEukaryotic cilia are assembled by intraflagellar transport (IFT) where large protein complexes called IFT particles move ciliary components from the cell body to the cilium. Defects in most IFT particle proteins disrupt ciliary assembly and cause mid gestational lethality in the mouse. IFT25 and IFT27 are unusual components of IFT-B in that they are not required for ciliary assembly and mutant mice survive to term.
View Article and Find Full Text PDFArf4 is proposed to be a critical regulator of membrane protein trafficking in early secretory pathway. More recently, Arf4 was also implicated in regulating ciliary trafficking, however, this has not been comprehensively tested in vivo. To directly address Arf4's role in ciliary transport, we deleted Arf4 specifically in either rod photoreceptor cells, kidney, or globally during the early postnatal period.
View Article and Find Full Text PDFMutations in peripherin 2 (PRPH2), also known as retinal degeneration slow/RDS, lead to various retinal degenerations including retinitis pigmentosa (RP) and macular/pattern dystrophy (MD/PD). PRPH2-associated disease is often characterized by a phenotypic variability even within families carrying the same mutation, raising interest in potential modifiers. PRPH2 oligomerizes with its homologue rod outer segment (OS) membrane protein 1 (ROM1), and non-pathogenic PRPH2/ROM1 mutations, when present together, lead to digenic RP.
View Article and Find Full Text PDFPeripherin 2 (PRPH2), also known as RDS (retinal degeneration slow) is a photoreceptor specific glycoprotein which is essential for normal photoreceptor health and vision. PRPH2/RDS is necessary for the proper formation of both rod and cone photoreceptor outer segments, the organelle specialized for visual transduction. When PRPH2/RDS is defective or absent, outer segments become disorganized or fail to form entirely and the photoreceptors subsequently degenerate.
View Article and Find Full Text PDFThe photoreceptor specific tetraspanin protein retina degeneration slow (RDS) is a critical component of the machinery necessary for the formation of rod and cone outer segments. Over 80 individual pathogenic mutations in RDS have been identified in human patients that lead to a wide variety of retinal degenerative diseases including retinitis pigmentosa, cone-rod dystrophy, and various forms of macular dystrophy. RDS-associated disease is characterized by a high degree of variability in phenotype and penetrance, making analysis of the underlying molecular mechanisms of interest difficult.
View Article and Find Full Text PDFThe photoreceptor-specific glycoprotein retinal degeneration slow (RDS, also called PRPH2) is necessary for the formation of rod and cone outer segments. Mutations in RDS cause rod and cone-dominant retinal disease, and it is well established that both cell types have different requirements for RDS. However, the molecular mechanisms for this difference remain unclear.
View Article and Find Full Text PDFMutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS).
View Article and Find Full Text PDFHum Mol Genet
December 2014
Mutations in the photoreceptor-specific gene peripherin-2 (PRPH-2, also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as well as the choroid and retinal pigment epithelium (RPE).
View Article and Find Full Text PDFMany monogenic retinal diseases target the human macula, and evaluating genetic treatments for these diseases in rodent models which lack a macula can be limiting. To better test the likelihood that novel treatments will be relevant to patients, assessing expression and distribution may be undertaken in a nonhuman primate (NHP) model. The purpose of this study was to establish baseline functional characteristics in the baboon (Papio anubis) eye to establish a control dataset for future experiments testing novel genetic therapies.
View Article and Find Full Text PDFMutations in the photoreceptor tetraspanin gene peripherin-2/retinal degeneration slow (PRPH2/RDS) cause both rod- and cone-dominant diseases. While rod-dominant diseases, such as autosomal dominant retinitis pigmentosa, are thought to arise due to haploinsufficiency caused by loss-of-function mutations, the mechanisms underlying PRPH2-associated cone-dominant diseases are unclear. Here we took advantage of a transgenic mouse line expressing an RDS mutant (R172W) known to cause macular degeneration (MD) in humans.
View Article and Find Full Text PDFThe neural retinal leucine zipper (Nrl) knockout mouse is a widely used model to study cone photoreceptor development, physiology, and molecular biology in the absence of rods. In the Nrl(-/-) retina, rods are converted into functional cone-like cells. The Nrl(-/-) retina is characterized by large undulations of the outer nuclear layer (ONL) commonly known as rosettes.
View Article and Find Full Text PDFThe two primary photoreceptor-specific tetraspanins are retinal degeneration slow (RDS) and rod outer segment membrane protein-1 (ROM-1). These proteins associate together to form different complexes necessary for the proper structure of the photoreceptor outer segment rim region. Mutations in RDS cause blinding retinal degenerative disease in both rods and cones by mechanisms that remain unknown.
View Article and Find Full Text PDFCysteine 150 of retinal degeneration slow protein (RDS) mediates the intermolecular disulfide bonding necessary for large RDS complex assembly and morphogenesis of the rim region of photoreceptor outer segments. Previously, we showed that cones have a different requirement for RDS than rods, but the nature of that difference was unclear. Here, we express oligomerization-incompetent RDS (C150S-RDS) in the cone-dominant nrl(-/-) mouse.
View Article and Find Full Text PDF