A core challenge in global change biology is to predict how species will respond to future environmental change and to manage these responses. To make such predictions and management actions robust to novel futures, we need to accurately characterize how organisms experience their environments and the biological mechanisms by which they respond. All organisms are thermodynamically connected to their environments through the exchange of heat and water at fine spatial and temporal scales and this exchange can be captured with biophysical models.
View Article and Find Full Text PDFAbstractTraits often contribute to multiple functions, complicating our understanding of the selective pressures that influence trait evolution. In the Chihuahuan Desert, predation is thought to be the primary driver of cryptic light coloration in three White Sands lizard species relative to the darker coloration of populations on adjacent dark soils. However, coloration also influences radiation absorption and thus animal body temperatures.
View Article and Find Full Text PDFAbstractAlthough climate warming poses a grave threat to amphibians, little is known about the capacity of this group to evolve in response to warming. The capacity of key traits to evolve depends on the presence of genetic variation on which selection can act. Here, we use repeatability estimates to estimate the potential upper bounds of heritable genetic variation in voluntary and critical thermal maxima of gray-cheeked salamanders ().
View Article and Find Full Text PDFPhysiological acclimation has the potential to improve survival during climate change by reducing sensitivity to warming. However, acclimation can produce trade-offs due to links between related physiological traits. Water loss and gas exchange are intrinsically linked by the need for respiratory surfaces to remain moist.
View Article and Find Full Text PDFOrganisms rely upon external cues to avoid detrimental conditions during environmental change. Rapid water loss, or desiccation, is a universal threat for terrestrial plants and animals, especially under climate change, but the cues that facilitate plastic responses to avoid desiccation are unclear. We integrate acclimation experiments with gene expression analyses to identify the cues that regulate resistance to water loss at the physiological and regulatory level in a montane salamander (Plethodon metcalfi).
View Article and Find Full Text PDFOver the past decade, ecologists and physiologists alike have acknowledged the importance of environmental heterogeneity. Meaningful predictions of the responses of organisms to climate will require an explicit understanding of how organismal behavior and physiology are affected by such heterogeneity. Furthermore, the responses of organisms themselves are quite heterogeneous: physiology and behavior vary over different time scales and across different life stages, and because physiological systems do not operate in isolation of one another, they need to be considered in a more integrated fashion.
View Article and Find Full Text PDFFor more than 70 years, Hutchinson's concept of the fundamental niche has guided ecological research. Hutchinson envisioned the niche as a multidimensional hypervolume relating the fitness of an organism to relevant environmental factors. Here, we challenge the utility of the concept to modern ecologists, based on its inability to account for environmental variation and phenotypic plasticity.
View Article and Find Full Text PDFWhen offspring share a womb, interactions among fetuses can impart lasting impressions on phenotypic outcomes. Such intrauterine interactions often are mediated by sex steroids (estrogens and androgens) produced by the developing fetuses. In many mammals, intrauterine interactions between brothers and sisters lead to masculinization of females, which can induce fitness consequences.
View Article and Find Full Text PDFHormones such as glucocorticoids and androgens enable animals to respond adaptively to environmental stressors. For this reason, circulating glucocorticoids became a popular biomarker for estimating the quality of an environment, and circulating androgens are frequently used to indicate social dominance. Here, we show that access to thermal resources influence the hormones and behavior of male lizards (Sceloporus jarrovi).
View Article and Find Full Text PDFExtinction rates are predicted to rise exponentially under climate warming, but many of these predictions ignore physiological and behavioral plasticity that might buffer species from extinction. We evaluated the potential for physiological acclimatization and behavioral avoidance of poor climatic conditions to lower extinction risk under climate change in the global hotspot of salamander diversity, a region currently predicted to lose most of the salamander habitat due to warming. Our approach integrated experimental physiology and behavior into a mechanistic species distribution model to predict extinction risk based on an individual's capacity to maintain energy balance with and without plasticity.
View Article and Find Full Text PDFThe capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change.
View Article and Find Full Text PDFAlthough most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources.
View Article and Find Full Text PDFWhen predicting the response of organisms to global change, models use measures of climate at a coarse resolution from general circulation models or from downscaled regional models. Organisms, however, do not experience climate at such large scales. The climate heterogeneity over a landscape and how much of that landscape an organism can sample will determine ultimately the microclimates experienced by organisms.
View Article and Find Full Text PDFIn recent years, ecologists have stepped up to address the challenges imposed by rapidly changing climates. Some researchers have developed niche-based methods to predict how species will shift their ranges. Such methods have evolved rapidly, resulting in models that incorporate physiological and behavioral mechanisms.
View Article and Find Full Text PDFReduction in body size is a major response to climate change, yet evidence in globally imperiled amphibians is lacking. Shifts in average population body size could indicate either plasticity in the growth response to changing climates through changes in allocation and energetics, or through selection for decreased size where energy is limiting. We compared historic and contemporary size measurements in 15 Plethodon species from 102 populations (9450 individuals) and found that six species exhibited significant reductions in body size over 55 years.
View Article and Find Full Text PDFPhysiological ecologists have long sought to understand the plasticity of organisms in environments that vary widely among years, seasons and even hours. This is now even more important because human-induced climate change is predicted to affect both the mean and variability of the thermal environment. Although environmental change occurs ubiquitously, relatively few researchers have studied the effects of fluctuating environments on the performance of developing organisms.
View Article and Find Full Text PDFAlthough climates are rapidly changing on a global scale, these changes cannot easily be extrapolated to the local scales experienced by organisms. In fact, such generalizations might be quite problematic. For instance, models used to predict shifts in the ranges of species during climate change rarely incorporate data resolved to <1 km(2), although most organisms integrate climatic drivers at much smaller scales.
View Article and Find Full Text PDFOn a global scale, changing climates are affecting ecological systems across multiple levels of biological organization. Moreover, climates are changing at rates unprecedented in recent geological history. Thus, one of the most pressing concerns of the modern era is to understand the biological responses to climate such that society can both adapt and implement measures that attempt to offset the negative impacts of a rapidly changing climate.
View Article and Find Full Text PDFSchwenk and colleagues challenged biologists to develop a deeper understanding of the linkages between organisms and environments. These linkages are captured by the concept of the niche, which has guided theoretical and empirical research in ecology for decades. Despite this research, we still cannot explain or predict much of the variation in niches over space and time.
View Article and Find Full Text PDFMost organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber) collected from a highly seasonal environment to four thermal treatments: (1) a constant 20°C; (2) a constant 10°C; (3) a steady decline from 20° to 10°C; and (4) a stochastic decline from 20° to 10°C that mimicked natural conditions during autumn.
View Article and Find Full Text PDFTwo major approaches address the need to predict species distributions in response to environmental changes. Correlative models estimate parameters phenomenologically by relating current distributions to environmental conditions. By contrast, mechanistic models incorporate explicit relationships between environmental conditions and organismal performance, estimated independently of current distributions.
View Article and Find Full Text PDFBecause temperature affects the growth, development, and survival of embryos, oviparous mothers should discriminate carefully among available nesting sites. We combined a radiotelemetric study of animal movements with a spatial mapping of environmental temperatures to test predictions about the nesting behavior of the eastern fence lizard (Sceloporus undulatus). Females made large excursions from their typical home ranges to construct nests in exposed substrates.
View Article and Find Full Text PDFThe genetic variances and covariances of traits must be known to predict how they may respond to selection and how covariances among them might affect their evolutionary trajectories. We used the animal model to estimate the genetic variances and covariances of basal metabolic rate (BMR) and maximal metabolic rate (MMR) in a genetically heterogeneous stock of laboratory mice. Narrow-sense heritability (h(2)) was approximately 0.
View Article and Find Full Text PDF