The potential for relapse following cessation of drug use can last for years, implying the induction of stable changes in neural circuitry. In hippocampal slices from rats treated with nicotine for 1 week, withdrawal from nicotine in vivo produces an increase in CA1 pyramidal cell excitability that persists up to 9 months. Immediately upon drug cessation, the enhanced excitability depends on input from regions upstream of CA1, while the long-term excitability change (> 4 weeks) is expressed as an increase in the intrinsic excitability of CA1 neurons.
View Article and Find Full Text PDFThe mouse gamma-aminobutyric acid (GABA) transporter mGAT1 was expressed in neuroblastoma 2a cells. 19 mGAT1 designs incorporating fluorescent proteins were functionally characterized by [(3)H]GABA uptake in assays that responded to several experimental variables, including the mutations and pharmacological manipulation of the cytoskeleton. Oligomerization and subsequent trafficking of mGAT1 were studied in several subcellular regions of live cells using localized fluorescence, acceptor photobleach Förster resonance energy transfer (FRET), and pixel-by-pixel analysis of normalized FRET (NFRET) images.
View Article and Find Full Text PDFPlasma membrane serotonin transporters (SERTs) regulate serotonin (5HT) levels in brain and are a site of action of antidepressants and psychostimulant drugs of abuse. Syntaxin 1A is a component of the synaptic vesicle docking and fusion apparatus and has been shown to interact with multiple plasma membrane neurotransmitter transporters including SERT. Previously, we showed that syntaxin 1A regulates the transport stoichiometry of SERT.
View Article and Find Full Text PDFNeuropharmacology
February 2008
The uptake of neurotransmitter by plasma membrane transporters is a principal method for regulating extracellular transmitter levels. Neurotransmitter-mediated signals in turn are able to regulate transporter expression and function. Thus, there is a continual interplay between transporters and the transmitters they transport.
View Article and Find Full Text PDFSodium-dependent neurotransmitter transporters participate in the clearance and/or recycling of neurotransmitters from synaptic clefts. The snf-11 gene in Caenorhabditis elegans encodes a protein of high similarity to mammalian GABA transporters (GATs). We show here that snf-11 encodes a functional GABA transporter; SNF-11-mediated GABA transport is Na+ and Cl- dependent, has an EC50 value of 168 microM, and is blocked by the GAT1 inhibitor SKF89976A.
View Article and Find Full Text PDFAlpha7 nicotinic acetylcholine receptors (nAChRs) modulate network activity in the CNS. Thus, functional regulation of alpha7 nAChRs could influence the flow of information through various brain nuclei. It is hypothesized here that these receptors are amenable to modulation by tyrosine phosphorylation.
View Article and Find Full Text PDFPlasma membrane neurotransmitter transporters rapidly traffic to and from the cell surface in neurons. This trafficking may be important in regulating neuronal signaling. Such regulation will be subject to the number of trafficking transporters and their trafficking rates.
View Article and Find Full Text PDFPlasma membrane neurotransmitter transporters determine in part the concentration, time course, and diffusion of extracellular transmitter. Much has been learned about how substrate translocation through the transporter occurs; however, the precise way in which transporter structure maps onto transporter function has not yet been fully elucidated. Here, biochemical and electrophysiological approaches were used to test the hypothesis that intracellular domains of the rat brain GABA transporter (GAT1) contribute to the transport process.
View Article and Find Full Text PDFA feature of the rat brain gamma-aminobutyric acid transporter GAT1, and other members of the neurotransmitter transporter family, is its regulated redistribution between intracellular locations and the plasma membrane. Recent studies have focused upon defining the signaling molecules that facilitate this redistribution. Agents that promote direct tyrosine phosphorylation of GAT1 promote a relative increase in surface GAT1 levels, and this results from a slowing of the transporter internalization rate.
View Article and Find Full Text PDFSerotonin transporters (SERTs), sites of psychostimulant action, display multiple conducting states in expression systems. These include a substrate-independent transient conductance, two separate substrate-independent leak conductances associated with Na(+) and H(+), and a substrate-dependent conductance of variable stoichiometry, which exceeds that predicted from electroneutral substrate transport. The present data show that the SNARE protein syntaxin 1A binds the N-terminal tail of SERT, and this interaction regulates two SERT-conducting states.
View Article and Find Full Text PDFGABA transporters control extracellular GABA levels by coupling transmitter uptake to the sodium and chloride cotransport. The rat brain GABA transporter GAT1 and other members of this family are regulated by direct interactions with syntaxin 1A, a protein involved in vesicle docking and in the regulation of several ion channels and transporters. We have shown previously that syntaxin 1A exerts its effects on GAT1 by decreasing the net uptake of GABA and its associated ions through interactions with aspartic acid residues in the N-terminal tail of GAT1.
View Article and Find Full Text PDFThe SLC6 family is a diverse set of transporters that mediate solute translocation across cell plasma membranes by coupling solute transport to the cotransport of sodium and chloride down their electrochemical gradients. These transporters probably have 12 transmembrane domains, with cytoplasmic N- and C-terminal tails, and at least some may function as homo-oligomers. Family members include the transporters for the inhibitory neurotransmitters GABA and glycine, the aminergic transmitters norepinephrine, serotonin, and dopamine, the osmolytes betaine and taurine, the amino acid proline, and the metabolic compound creatine.
View Article and Find Full Text PDF(1) Atropine, a classical muscarinic antagonist, has been reported previously to inhibit neuronal nicotinic acetylcholine receptors (nAChRs). In the present study, the action of atropine has been examined on alpha3beta4 receptors expressed heterologously in Xenopus oocytes and native nAChRs in medial habenula neurons. (2) At concentrations of atropine often used to inhibit muscarinic receptors (1 micro M), responses induced by near-maximal nicotine concentrations (100 micro M) at negative holding potentials (-65 mV) are inhibited (14-30%) in a reversible manner in both alpha4 and alpha3 subunit-containing heteromeric nAChRs.
View Article and Find Full Text PDFNorepinephrine (NE) transporters (NETs) terminate noradrenergic synaptic transmission and represent a major therapeutic target for antidepressant medications. NETs and related transporters are under intrinsic regulation by receptor and kinase-linked pathways, and clarification of these pathways may suggest candidates for the development of novel therapeutic approaches. Syntaxin 1A, a presynaptic soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, interacts with NET and modulates NET intrinsic activity.
View Article and Find Full Text PDFPlasma membrane neurotransmitter transporters affect synaptic signaling through transmitter sequestration. Transporters redistribute to and from the plasma membrane, suggesting a role for trafficking in regulating synaptic transmitter levels. One method for controlling transmitter levels would be to regulate transporter redistribution in parallel with transmitter release.
View Article and Find Full Text PDFThe molecular mechanisms underlying polarized sorting of proteins in neurons are poorly understood. Here we report the identification of a 16 amino-acid, dileucine-containing motif that mediates dendritic targeting in a variety of neuronal cell types in slices of rat brain. This motif is present in the carboxy (C) termini of Shal-family K+ channels and is highly conserved from C.
View Article and Find Full Text PDFGABA transporter subtype 1 (GAT1) molecules were counted near GABAergic synapses, to a resolution of approximately 0.5 microm. Fusions between GAT1 and green fluorescent protein (GFP) were tested in heterologous expression systems, and a construct was selected that shows function, expression level, and trafficking similar to that of wild-type (WT) GAT1.
View Article and Find Full Text PDFSyntaxin 1A binds to and inhibits epithelial cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and synaptic Ca(2+) channels in addition to participating in SNARE complex assembly and membrane fusion. We exploited the isoform-specific nature of the interaction between syntaxin 1A and CFTR to identify residues in the H3 domain of this SNARE (SNARE motif) that influence CFTR binding and regulation. Mutating isoform-specific residues that map to the surface of syntaxin 1A in the SNARE complex led to the identification of two sets of hydrophilic residues that are important for binding to and regulating CFTR channels or for binding to the syntaxin regulatory protein Munc-18a.
View Article and Find Full Text PDFThe loss of functional response upon continuous or repeated exposure to agonist, desensitization, is an intriguing phenomenon if not as yet a well-defined physiological mechanism. However, detailed evaluation of the properties of desensitization, especially for the superfamily of ligand-gated ion channels, reveals how the nervous system could make important use of this process that goes far beyond simply curtailing excessive receptor stimulation and the prevention of excitotoxicity. Here we will review the mechanistic basis of desensitization and discuss how the subunit-dependent properties and regulation of nicotinic acetylcholine receptor (nAChR) desensitization contribute to the functional diversity of these channels.
View Article and Find Full Text PDFInt J Dev Neurosci
December 2002
Neurotransmitter transporters are regulated through a variety of signal transduction mechanisms which may operate in order to maintain appropriate levels of transmitter in the synaptic cleft. GABA and glycine transporters both interact with components of the neurotransmitter release, such as the SNARE protein syntaxin 1A, suggesting that protein-protein interactions are a common method for regulating members of the neurotransmitter transporter family, and thus, linking the release of transmitter to its subsequent re-uptake. In the present report, the interaction of syntaxin 1A with endogenous serotonin transporters (SERT) expressed in developing thalamocortical neurons is examined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2002
Several ion channels and pumps are regulated by syntaxin 1A, a component of the synaptic vesicle docking and fusion apparatus. One such regulated protein is the rat brain gamma-aminobutyric acid (GABA) transporter GAT1. The N-terminal cytoplasmic domain of GAT1 directly interacts with syntaxin 1A; this interaction induces a decrease in the rate at which GABA and associated ions are transported.
View Article and Find Full Text PDF5-HT transporters (SERTs) are transiently expressed in thalamocortical neurons during development, permitting these glutamatergic neurons to co-release 5-HT as a "borrowed" transmitter. The high level of SERT expression in these neurons is likely important in the serotonergic modulation of neocortical circuits and provides a system for examining endogenous SERT regulation. We tested the hypothesis that developmental expression of SERT in thalamocortical neurons is regulated by psychostimulants that are agonists and antagonists of SERT.
View Article and Find Full Text PDF