Publications by authors named "Michael W M Jones"

Understanding the osteochondral junction, where non-mineralised cartilage and mineralised bone converge, is crucial for joint health. Current sample preparation techniques are insufficient for detailed spatial hyperspectral imaging analysis. Using the enhanced Kawamoto method, we used the super cryo embedding medium's temperature-dependent properties to transfer high-quality tissue samples onto slides for spatial imaging analysis.

View Article and Find Full Text PDF

Placental health and foetal development are dependent upon element homeostasis. Analytical techniques such as mass spectroscopy can provide quantitative data on element concentrations in placental tissue but do not show spatial distribution or co-localisation of elements that may affect placental function. The present study used synchrotron-based X-ray fluorescence microscopy to elucidate element content and distribution in healthy and pathological placental tissue.

View Article and Find Full Text PDF

The Carajás plateaus in Brazil host endemic epilithic vegetation ("campo rupestre") on top of ironstone duricrusts, known as canga. This capping rock is primarily composed of iron(III) oxide minerals and forms a physically resistant horizon. Field observations reveal an intimate interaction between canga's surface and two native sedges (Rhynchospora barbata and Bulbostylis cangae).

View Article and Find Full Text PDF

Silicon (Si) is recognized as a promising anode material for next-generation anodes due to its high capacity. However, large volume expansion and active particle pulverization during cycling rapidly deteriorate the battery performance. The relationship between Si anode particle size and particle pulverization, and the structure evolution of Si particles during cycling is not well understood.

View Article and Find Full Text PDF

The osteochondral interface is a thin layer that connects hyaline cartilage to subchondral bone. Subcellular elemental distribution can be visualised using synchrotron X-ray fluorescence microscopy (SR-XFM) (1 μm). This study aims to determine the relationship between elemental distribution and osteoarthritis (OA) progression based on disease severity.

View Article and Find Full Text PDF

X-ray fluorescence spectroscopy (XRF) is a powerful technique for the in vivo assessment of plant tissues. However, the potential X-ray exposure damages might affect the structure and elemental composition of living plant tissues, leading to artefacts in the recorded data. Herein, we exposed in vivo soybean (Glycine max (L.

View Article and Find Full Text PDF

The growing amount of W mining waste produced globally is of concern for its proven hazard to the environment and to human health. While uncontrolled biooxidation can result in environmental harm, bioleaching, where pregnant leach solutions are controlled, has been widely used in the mining industry for valuable metals recovery, often from low-grade materials. This bioleaching study was developed to evaluate whether the biogeochemical reprocessing of W tailings could be employed for the decontamination of W-bearing mine waste, combined with valuable metals recovery, i.

View Article and Find Full Text PDF

Wolframite [(Fe,Mn)WO] tailings represent a hazardous waste that can pose a threat to the environment, humans, animals and plants. The present study aims to conduct a high-resolution depth profile characterization of wolframite tailings from Wolfram Camp, North Queensland, Australia, to understand the biogeochemical influences on W mobilization. Several indigenous Fe- and S-oxidizing bacteria (e.

View Article and Find Full Text PDF

Collocated crystal sizes and mineral identities are critical for interpreting textural relationships in rocks and testing geological hypotheses, but it has been previously impossible to unambiguously constrain these properties using in situ instruments on Mars rovers. Here, we demonstrate that diffracted and fluoresced x-rays detected by the PIXL instrument (an x-ray fluorescence microscope on the Perseverance rover) provide information about the presence or absence of coherent crystalline domains in various minerals. X-ray analysis and multispectral imaging of rocks from the Séítah formation on the floor of Jezero crater shows that they were emplaced as coarsely crystalline igneous phases.

View Article and Find Full Text PDF

The anatomy of the osteochondral junction is complex because several tissue components exist as a unit, including uncalcified cartilage (with superficial, middle, and deep layers), calcified cartilage, and subchondral bone. Furthermore, it is difficult to study because this region is made up of a variety of cell types and extracellular matrix compositions. Using X-ray fluorescence microscopy, we present a protocol for simultaneous elemental detection on fresh frozen samples.

View Article and Find Full Text PDF

Over the last decade ptychography has progressed rapidly from a specialist ultramicroscopy technique into a mature method accessible to non-expert users. However, to improve scientific value ptychography data must reconstruct reliably, with high image quality and at no cost to other correlative methods. Presented here is the implementation of high-speed ptychography used at the Australian Synchrotron on the XFM beamline, which includes a free-run data collection mode where dead time is eliminated and the scan time is optimized.

View Article and Find Full Text PDF

Tumours are abnormal growths of cells that reproduce by redirecting essential nutrients and resources from surrounding tissue. Changes to cell metabolism that trigger the growth of tumours are reflected in subtle differences between the chemical composition of healthy and malignant cells. We used LA-ICP-MS imaging to investigate whether these chemical differences can be used to spatially identify tumours and support detection of primary colorectal tumours in anatomical pathology.

View Article and Find Full Text PDF

Examining chemical and structural characteristics of micro-features in complex tissue matrices is essential for understanding biological systems. Advances in multimodal chemical and structural imaging using synchrotron radiation have overcome many issues in correlative imaging, enabling the characterization of distinct microfeatures at nanoscale resolution in tissues. We present a nanoscale imaging method that pairs X-ray ptychography and X-ray fluorescence microscopy (XFM) to simultaneously examine structural features and quantify elemental content of microfeatures in complex tissues.

View Article and Find Full Text PDF

Objective: Damage to locus ceruleus neurons could play a part in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis because of impairment of the blood-brain barrier and enhanced neuroinflammation. The locus ceruleus has connections throughout the brain and spinal cord, so the characteristic widespread multifocal pathology in these disorders could be due to damage to different subsets of locus ceruleus neurons. Previous studies have shown that only certain locus ceruleus neurons accumulate the neurotoxic metal mercury.

View Article and Find Full Text PDF

Determining the oxidation state of Fe through parameterization of X-ray absorption near-edge structure (XANES) spectral features is highly dependent on accurate and repeatable energy calibration between spectra. Small errors in energy calibration can lead to vastly different interpretations. While simultaneous measurement of a reference foil is often undertaken on X-ray spectroscopy beamlines, other beamlines measure XANES spectra without a reference foil and therefore lack a method for correcting energy drift.

View Article and Find Full Text PDF

Background And Aims: X-ray fluorescence microscopy (XFM) is a powerful technique to elucidate the distribution of elements within plants. However, accumulated radiation exposure during analysis can lead to structural damage and experimental artefacts including elemental redistribution. To date, acceptable dose limits have not been systematically established for hydrated plant specimens.

View Article and Find Full Text PDF

Electrochemical water splitting to generate hydrogen has been identified as a possible solution to the storage of intermittent renewable energy. However there are still challenges remaining in the development of stable electrocatalysts for the oxygen evolution half-reaction. Here we investigate the effects that the oxygen evolution reaction (OER) has on an electrodeposited Ni(OH)2 catalyst operated under alkaline conditions.

View Article and Find Full Text PDF

Biological X-ray fluorescence microscopy (XFM) is an important tool for determining quantitative distributions of bioinorganics and essential trace elements. Here we present a new analysis approach for rapid nanoscale ptychographic imaging and simultaneous chemical mapping of large radiation sensitive specimens without image degradation associated with probe evolution.

View Article and Find Full Text PDF

Analytical approaches that preserve the endogenous state of the examined system are essential for the in vivo study of bioinorganics. X-ray fluorescence microscopy of biological samples can map elements in vivo at subcellular resolutions in tissue samples and multicellular organisms. However, X-ray irradiation induces modifications that accumulate with dose.

View Article and Find Full Text PDF

The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'.

View Article and Find Full Text PDF

X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses.

View Article and Find Full Text PDF

Owing to its extreme sensitivity, quantitative mapping of elemental distributions via X-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition.

View Article and Find Full Text PDF

The biologically important metals such as zinc, copper and iron play key roles in retinal function, yet no study has mapped the spatio-temporal distribution of retinal biometals in healthy or diseased retina. We investigated a natural mouse model of retinal degeneration, the Cln6 mouse. As dysfunctional metabolism of biometals is observed in the brains of these animals and deregulated metal homeostasis has been linked to retinal degeneration, we focused on mapping the elemental distribution in the healthy and Cln6 mouse retina with age.

View Article and Find Full Text PDF

Here, we present a sub-μm multimodal approach to image essential elements in Caenorhabditis elegans. A combination of chemical imaging technologies reveals total metal concentration, chemical state and the protein to which an element is associated. This application of distinct yet complementary chemical imaging techniques provided unique insight into essential and trace elements at the subcellular level.

View Article and Find Full Text PDF