Publications by authors named "Michael W I Schmidt"

Carbon-rich peat soils have been drained and used extensively for agriculture throughout human history, leading to significant losses of their soil carbon. One solution for rewetting degraded peat is wet crop cultivation. Crops such as rice, which can grow in water-saturated conditions, could enable agricultural production to be maintained whilst reducing CO and NO emissions from peat.

View Article and Find Full Text PDF

Peatlands are an important carbon (C) reservoir storing one-third of global soil organic carbon (SOC), but little is known about the fate of these C stocks under climate change. Here, we examine the impact of warming and elevated atmospheric CO concentration (eCO) on the molecular composition of SOC to infer SOC sources (microbe-, plant- and fire-derived) and stability in a boreal peatland. We show that while warming alone decreased plant- and microbe-derived SOC due to enhanced decomposition, warming combined with eCO increased plant-derived SOC compounds.

View Article and Find Full Text PDF
Article Synopsis
  • Soils are key carbon reservoirs, storing more carbon than other land ecosystems, but the mechanisms behind soil organic carbon (SOC) formation and persistence are still unclear, complicating predictions about their behavior in a changing climate.
  • Microorganisms are critical in influencing SOC through various processes, and microbial carbon use efficiency (CUE) serves as a key indicator of how these processes balance, impacting SOC storage.
  • Research suggests that CUE is significantly more important than other factors like carbon input or decomposition in determining SOC levels globally, and a better understanding of CUE and its environmental interactions could enhance predictions of SOC responses to climate change.
View Article and Find Full Text PDF

Subsoils contain more than half of soil organic carbon (SOC) and are expected to experience rapid warming in the coming decades. Yet our understanding of the stability of this vast carbon pool under global warming is uncertain. In particular, the fate of complex molecular structures (polymers) remains debated.

View Article and Find Full Text PDF

Rising temperatures have the potential to directly affect carbon cycling in peatlands by enhancing organic matter (OM) decomposition, contributing to the release of CO and CH to the atmosphere. In turn, increasing atmospheric CO concentration may stimulate photosynthesis, potentially increasing plant litter inputs belowground and transferring carbon from the atmosphere into terrestrial ecosystems. Key questions remain about the magnitude and rate of these interacting and opposing environmental change drivers.

View Article and Find Full Text PDF

Subsoils below 20 cm are an important reservoir in the global carbon cycle, but little is known about their vulnerability under climate change. We measured a statistically significant loss of subsoil carbon (-33 ± 11%) in warmed plots of a conifer forest after 4.5 years of whole-soil warming (4°C).

View Article and Find Full Text PDF

Soil organic carbon (SOC) dynamics represent a persisting uncertainty in our understanding of the global carbon cycle. SOC storage is strongly linked to plant inputs via the formation of soil organic matter, but soil geochemistry also plays a critical role. In tropical soils with rapid SOC turnover, the association of organic matter with soil minerals is particularly important for stabilising SOC but projected increases in tropical forest productivity could trigger feedbacks that stimulate the release of stored SOC.

View Article and Find Full Text PDF

Riverine dissolved organic carbon (DOC) contains charcoal byproducts, termed black carbon (BC). To determine the significance of BC as a sink of atmospheric CO and reconcile budgets, the sources and fate of this large, slow-cycling and elusive carbon pool must be constrained. The Amazon River is a significant part of global BC cycling because it exports an order of magnitude more DOC, and thus dissolved BC (DBC), than any other river.

View Article and Find Full Text PDF

Humans have interacted with fire for thousands of years, yet the utilization of fossil fuels marked the beginning of a new era. Ubiquitous in the environment, pyrogenic carbon (PyC) arises from incomplete combustion of biomass and fossil fuels, forming a continuum of condensed aromatic structures. Here, we develop and evaluate C records for two complementary PyC molecular markers, benzene polycarboxylic acids (BPCAs) and polycyclic aromatic hydrocarbons (PAHs), preserved in aquatic sediments from a suburban and a remote catchment in the United States (U.

View Article and Find Full Text PDF

Plant-soil interactions are recognized to play a crucial role in the ecosystem response to climate change. We developed a facility to disentangle the complex interactions behind the plant-soil C feedback mechanisms. The MICE ('Multi-Isotope labelling in a Controlled Environment') facility consists of two climate chambers with independent control of the atmospheric conditions (light, CO, temperature, humidity) and the soil environment (temperature, moisture).

View Article and Find Full Text PDF

Fire-derived, pyrogenic carbon (PyC), sometimes called black carbon (BC), is the carbonaceous solid residue of biomass and fossil fuel combustion, such as char and soot. PyC is ubiquitous in the environment due to its long persistence, and its abundance might even increase with the projected increase in global wildfire activity and the continued burning of fossil fuel. PyC is also increasingly produced from the industrial pyrolysis of organic wastes, which yields charred soil amendments (biochar).

View Article and Find Full Text PDF

Pyrogenic organic matter (PyOM) decomposes on centennial timescale in soils, but the processes regulating its decay are poorly understood. We conducted one of the first studies of PyOM and wood decomposition in a temperate forest using isotopically labeled organic substrate, and quantified microbial incorporation and physico-chemical transformations of PyOM in situ. Stable-isotope (¹³C and ¹⁵N) enriched PyOM and its precursor wood were added to the soil at 2 cm depth at ambient (N0) and increased (N+) levels of nitrogen fertilization.

View Article and Find Full Text PDF

Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant- and microbial-derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C-depleted) CO2 and N deposition in forest ecosystems established in open-top chambers on composition and turnover of fatty acids (FAs) in plants and soils.

View Article and Find Full Text PDF

The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to fires. Benzene polycarboxylic acids (BPCA) are molecular markers specific for pyrogenic carbon (PyC) which can provide information on the degree of aromatic condensation in charcoals.

View Article and Find Full Text PDF

Atmospheric nitrogen (N) deposition has frequently been observed to increase soil carbon (C) storage in forests, but the underlying mechanisms still remain unclear. Changes in microbial community composition and substrate use are hypothesized to be one of the key mechanisms affected by N inputs. Here, we investigated the effects of N deposition on amino sugars, which are used as biomarkers for fungal- and bacterial-derived microbial residues in soil.

View Article and Find Full Text PDF

The analysis of pyrogenic carbon (PyC) in environmental samples is of great interest, e.g. for carbon cycle assessment, (bio-)char characterization and palaeo-environmental or archeological reconstruction.

View Article and Find Full Text PDF

Pyrogenic organic matter (PyOM), the incomplete combustion product of organic materials, is considered stable in soils and represents a potentially important terrestrial sink for atmospheric carbon dioxide. One well-established method of measuring PyOM in the environment is as benzene polycarboxylic acids (BPCAs), a compound-specific method, which allows both qualitative and quantitative estimation of PyOM. Until now, stable isotope measurement of PyOM carbon involved measurement of the trimethylsilyl (TMS) or methyl (Me) polycarboxylic acid derivatives by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

View Article and Find Full Text PDF

Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate.

View Article and Find Full Text PDF

A common method to estimate the carbon isotopic composition of soil-respired air is to use Keeling plots (delta(13)C versus 1/CO2 concentration). This approach requires the precise determination of both CO2 concentration ([CO2]), usually measured with an infrared gas analyser (IRGA) in the field, and the analysis of delta(13)C by isotope ratio mass spectrometry (IRMS) in the laboratory. We measured [CO2] with an IRGA in the field (n = 637) and simultaneously collected air samples in 12 mL vials for analysis of the 13C values and the [CO2] using a continuous-flow isotope ratio mass spectrometer.

View Article and Find Full Text PDF

Five type II kerogens, shown by elemental analysis and Rock-Eval pyrolysis to represent a gradient of thermal maturity, were further characterized using a range of solid-state 13C NMR spectroscopic techniques. 13C cross polarization (CP) NMR spectra of the kerogens confirmed the well-established pattern of increasing aromaticity with increasing thermal maturity. Spin counting showed that CP observability was around 50% for the immature kerogens, and only 14-25% for the mature kerogens.

View Article and Find Full Text PDF