Publications by authors named "Michael W Hudoba"

The ability to self-assemble nanodevices with programmed structural dynamics that can sense and respond to the local environment could enable transformative applications in fields including molecular robotics, nanomanufacturing, and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. Here, we mimic this approach by engineering inherent nanoscale structural dynamics (nanodynamics) into a DNA device that exhibits a distribution of conformations including two stable states separated by a transition state where the energy barrier height is on the scale of the thermal energy, kT = 4.

View Article and Find Full Text PDF

Deoxyribonucleic acid (DNA) origami is a method for the bottom-up self-assembly of complex nanostructures for applications, such as biosensing, drug delivery, nanopore technologies, and nanomechanical devices. Effective design of such nanostructures requires a good understanding of their mechanical behavior. While a number of studies have focused on the mechanical properties of DNA origami structures, considering defects arising from molecular self-assembly is largely unexplored.

View Article and Find Full Text PDF