Chinese hamster ovary (CHO) bioprocesses, the dominant platform for therapeutic protein production, are increasingly used to produce complex multispecific proteins. Product quantity and quality are affected by intracellular conditions, but these are challenging to measure and often overlooked during process optimization studies. pH is known to impact quality attributes like protein aggregation across upstream and downstream processes, yet the effects of intracellular pH on cell culture performance are largely unknown.
View Article and Find Full Text PDFThe global COVID-19 pandemic ignited an unprecedented race to develop vaccines and antibody therapeutics. AstraZeneca's pursuit to provide AZD7442 (EVUSHELD), two long-acting, SARS-CoV-2 spike receptor binding domain-specific neutralizing monoclonal antibodies, to individuals at risk on highly accelerated timelines challenged our traditional ways of process development and spurred the rapid adoption of novel approaches. Conventional upstream development processes were replaced by agile strategies that combined technological advances and highly accelerated workflows.
View Article and Find Full Text PDFThe production of biologics that treat complex diseases, such as cancer, autoimmune, and infectious disease, requires careful monitoring and control of cell cultures. While bioprocess optimizations have dramatically improved production yields, a lack of analytical tools has made it challenging to identify accompanying intracellular improvements. Intracellular redox can diminish the growth and productivity of biologics-producing cells and adversely impact product quality profiles yet characterizing redox is challenging due to its complex and highly transient nature.
View Article and Find Full Text PDFEngineered Chinese hamster ovary (CHO) cells are the most widely utilized cell line for protein-based therapeutics production at industrial scales. Process development strategies which improve production capacity and quality are often implemented without an understanding of underlying intracellular changes. Intracellular redox conditions drive reactions in pathways critical to biologics production, including bioenergetic and biosynthetic pathways, necessitating methods to quantify redox-related changes.
View Article and Find Full Text PDFOne major challenge observed for the expression of therapeutic bispecific antibodies (BisAbs) is high product aggregates. Aggregates increase the risk of immune responses in patients and therefore must be removed at the expense of purification yields. BisAbs contain engineered disulfide bonds, which have been demonstrated to form product aggregates, if mispaired.
View Article and Find Full Text PDFIgG4s are dynamic molecules that undergo a process called Fab-arm exchange. Disulfide bonds between heavy chains are transiently reduced, resulting in half antibodies that reform intact antibodies with other IgG4 half antibodies. In vivo, therapeutic IgG4s can recombine with endogenous IgG4s, resulting in a heterogeneous mixture of bispecific antibodies.
View Article and Find Full Text PDFThe phenomenon of monoclonal antibody (mAb) interchain disulfide bond reduction during manufacturing processes continues to be a focus of the biotechnology industry due to the potential for loss of product, increased complexity of purification processes, and reduced stability of the drug product. We hypothesized that antibody reduction can be mitigated by controlling the cell culture redox potential and subsequently established a threshold redox potential above which the mAb remained intact and below which there were significant and highly variable amounts of reduced mAb. Using this knowledge, we developed three control schemes to prevent mAb reduction in the bioreactor by controlling the cell culture redox potential via an online redox probe.
View Article and Find Full Text PDFA key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature.
View Article and Find Full Text PDFAntibody interchain disulfide bond reduction during biopharmaceutical manufacturing has received increased attention since it was first reported in 2010. Antibody reduction leads to loss of product and reduced product stability. It is therefore critical to understand the underlying mechanisms of reduction.
View Article and Find Full Text PDFAllergy is an immune response to complex mixtures of multiple allergens, yet current models use a single synthetic allergen. Multiple allergens were modeled using two well-defined tetravalent allergens, each specific for a distinct IgE, thus enabling a systematic approach to evaluate the effect of each allergen and percentage of allergen-specific IgE on mast cell degranulation. We found the overall degranulation response caused by two allergens is additive for low allergen concentrations or low percent specific IgE, does not change for moderate allergen concentrations with moderate to high percent specific IgE, and is reduced for high allergen concentrations with moderate to high percent specific IgE.
View Article and Find Full Text PDFIn a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs.
View Article and Find Full Text PDFCurrent treatments for allergies include epinephrine and antihistamines, which treat the symptoms after an allergic response has taken place; steroids, which result in local and systemic immune suppression; and IgE-depleting therapies, which can be used only for a narrow range of clinical IgE titers. The limitations of current treatments motivated the design of a heterobivalent inhibitor (HBI) of IgE-mediated allergic responses that selectively inhibits allergen-IgE interactions, thereby preventing IgE clustering and mast cell degranulation. The HBI was designed to simultaneously target the allergen binding site and the adjacent conserved nucleotide binding site (NBS) found on the Fab of IgE Abs.
View Article and Find Full Text PDFDevelopment of specific inhibitors of allergy has had limited success, in part, owing to a lack of experimental models that reflect the complexity of allergen-IgE interactions. We designed a heterotetravalent allergen (HtTA) system, which reflects epitope heterogeneity, polyclonal response and number of immunodominant epitopes observed in natural allergens, thereby providing a physiologically relevant experimental model to study mast cell degranulation. The HtTA design revealed the importance of weak-affinity epitopes in allergy, particularly when presented with high-affinity epitopes.
View Article and Find Full Text PDFLiposome Extruder Purification (LEP) allows for the rapid purification of diverse liposome formulations using the same extrusion apparatus employed during liposome formation. The LEP process provides a means for purifying functionalized liposomes from non-conjugated drug or protein contaminants with >93% liposome recovery and >93% contaminant removal in a single step.
View Article and Find Full Text PDFThe conserved nucleotide binding site (NBS), found in the Fab variable domain of all antibody isotypes, remains a not-so-widely known and under-utilized site. Here, we describe a UV photocrosslinking method (UV-NBS) that utilizes the NBS for site-specific covalent functionalization of antibodies, while preserving antibody activity. We identified a small molecule, indole-3-butyric acid (IBA), which has affinity for the NBS (K(d) = 1-8 μM) and can be photocrosslinked to antibodies upon UV energy exposure.
View Article and Find Full Text PDFThis Article describes an affinity-based precipitation method for the rapid and nonchromatographic purification of bivalently active monoclonal antibodies by combining the selectivity of affinity chromatography with the simplicity of salt-induced precipitation. This procedure involves (i) precipitation of proteins heavier than immunoglobulins with ammonium sulfate; (ii) formation and selective precipitation of cyclic antibody complexes created by binding to trivalent haptens specific for the antibody; and (iii) membrane filtration of the solubilized antibody pellet to remove the trivalent hapten from the purified antibody. We applied this technique to the purification of two pharmaceutical antibodies, trastuzumab and rituximab, by synthesizing trivalent haptens specific for each antibody.
View Article and Find Full Text PDFThe present paper describes the design of a HtTA (heterotetravalent allergen) as a multi-component experimental system that enables an integrative approach to study mast cell degranulation. The HtTA design allows presentation of two distinct haptens, each with a valency of 2, thereby better reflecting the complexity of natural allergens by displaying epitope heterogeneity and IgE antibody variability. Using the HtTA design, synthetic allergens HtTA-1 and HtTA-2 were synthesized to model a combination of epitope/IgE affinities.
View Article and Find Full Text PDFThe conserved nucleotide binding site (NBS), found within the Fab variable domain of antibodies, remains a not-so-widely known and underutilized site. Here we describe a novel affinity chromatography method that utilizes the NBS as a target for selectively purifying antibodies from complex mixtures. The affinity column was prepared by coupling indole butyric acid (IBA), which has a monovalent affinity for the NBS with a K(d) ranging between 1 and 8 μM, to ToyoPearl resin resulting in the NBS targeting affinity column (NBS(IBA)).
View Article and Find Full Text PDFThis study describes the design of a well-defined homotetravalent synthetic allergen (HTA) system to investigate the effect of hapten-IgE interactions on mast cell degranulation. A library of DNP variants with varying affinities for IgE(DNP) was generated (K(d) from 8.1 nM to 9.
View Article and Find Full Text PDFWe describe the design, synthesis, and characterization of a heterobivalent ligand (HBL) system that competitively inhibits allergen binding to mast cell bound IgE antibody, thereby inhibiting mast cell degranulation. HBLs are composed of a hapten conjugated to a nucleotide analog allowing simultaneous targeting of the antigen-binding site as well the "unconventional nucleotide binding site" on IgE Fab domains. Simultaneous bivalent binding to both sites provides HBLs with over 100-fold enhancement both in avidity for IgE(DNP) (K(d) = 0.
View Article and Find Full Text PDFCisplatin is a first line chemotherapy for most types of cancer. However, its use is dose-limited due to severe nephrotoxicity. Here we report the rational engineering of a novel nanoplatinate inspired by the mechanisms underlying cisplatin bioactivation.
View Article and Find Full Text PDF