Publications by authors named "Michael W Brands"

Blood pressure variability (BPV) has emerged as a novel risk factor for cognitive decline and dementia, independent of alterations in average blood pressure (BP). However, the underlying consequences of large BP fluctuations on the neurovascular complex are unknown. We developed a novel mouse model of BPV in middle-aged mice based on intermittent Angiotensin II infusions.

View Article and Find Full Text PDF

HMG (high mobility group) proteins are a diverse family of nonhistone chromosomal proteins that interact with DNA and a wide range of transcriptional regulators to regulate the structural architecture of DNA. HMGXB4 (also known as HMG2L1) is an HMG protein family member that contains a single HMG box domain. Our previous studies have demonstrated that HMGXB4 suppresses smooth muscle differentiation and exacerbates endotoxemia by promoting a systemic inflammatory response in mice.

View Article and Find Full Text PDF

Sodium bicarbonate (NaHCO3) is commonly utilized as a therapeutic to treat metabolic acidosis in people with chronic kidney disease (CKD). While increased dietary sodium chloride (NaCl) is known to promote volume retention and increase blood pressure, the effects of NaHCO3 loading on blood pressure and volume retention in CKD remain unclear. In the present study, we compared the effects of NaCl and NaHCO3 loading on volume retention, blood pressure, and kidney injury in both 2/3 and 5/6 nephrectomy remnant kidney rats, a well-established rodent model of CKD.

View Article and Find Full Text PDF

Background: AngII (angiotensin II)-dependent hypertension causes comparable elevations of blood pressure (BP), aldosterone levels, and renal ENaC (epithelial Na channel) activity in male and female rodents. Mineralocorticoid receptor (MR) antagonism has a limited antihypertensive effect associated with insufficient suppression of renal ENaC in male rodents with AngII-hypertension. While MR blockade effectively reduces BP in female mice with salt-sensitive and leptin-induced hypertension, MR antagonism has not been studied in female rodents with AngII-hypertension.

View Article and Find Full Text PDF

Background: Obesity is associated with increased risk of cardiovascular disease, but underlying mechanisms remain elusive. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor, but how glucose impacts vascular function is unclear. GAL3 (galectin-3) is a sugar-binding lectin upregulated by hyperglycemia, but its role as a causative mechanism of cardiovascular disease remains poorly understood.

View Article and Find Full Text PDF

Phosphodiesterase-5 inhibitors (PDE5i) are under investigation for repurposing for colon cancer prevention. A drawback to conventional PDE5i are their side-effects and drug-drug interactions. We designed an analog of the prototypical PDE5i sildenafil by replacing the methyl group on the piperazine ring with malonic acid to reduce lipophilicity, and measured its entry into the circulation and effects on colon epithelium.

View Article and Find Full Text PDF

Rationale: Obesity increases the risk of cardiovascular disease (CVD) through mechanisms that remain incompletely defined. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor but how glucose impacts vascular function is unclear. Galectin-3 (GAL3) is a sugar binding lectin upregulated by hyperglycemia but its role as a causative mechanism of CVD remains poorly understood.

View Article and Find Full Text PDF

Prenatal, perinatal, and adulthood exposure to chronic intermittent hypoxia (IH) increases blood pressure in rodents. Males exposed to chronic IH have higher blood pressure versus females. However, it is unknown if this same-sex difference exists with acute perinatal IH.

View Article and Find Full Text PDF

Apoptosis is a physiological and anti-inflammatory form of cell death that is indispensable for normal physiology and homeostasis. Several studies have reported aberrant activation of apoptosis in various tissues at the onset of hypertension. However, the functional significance of apoptosis during essential hypertension remains largely undefined.

View Article and Find Full Text PDF

Over the past decade there has been increasing support for a role of the immune system in the development of hypertension. Our lab has previously reported that female spontaneously hypertensive rats (SHRs) have a blood pressure (BP)-dependent increase in anti-inflammatory renal regulatory T cells (Tregs), corresponding to lower BP compared with males. However, little is known regarding the mechanism for greater renal Tregs in females.

View Article and Find Full Text PDF

Chronic hypoperfusion is a key contributor to cognitive decline and neurodegenerative conditions, but the cellular mechanisms remain ill-defined. Using a multidisciplinary approach, we sought to elucidate chronic hypoperfusion-evoked functional changes at the neurovascular unit. We used bilateral common carotid artery stenosis (BCAS), a well-established model of vascular cognitive impairment, combined with an ex vivo preparation that allows pressurization of parenchymal arterioles in a brain slice.

View Article and Find Full Text PDF

Background: Recent clinical studies report that women with a history of AKI have an increased incidence of maternal and fetal adverse outcomes during pregnancy, despite fully recovering renal function prior to conception. The mechanisms contributing to such adverse outcomes in pregnancy after AKI are not yet understood.

Methods: To develop a rodent model to investigate fetal and maternal outcomes in female animals with a history of AKI, we used ischemia-reperfusion injury as an experimental model of AKI in female Sprague Dawley rats.

View Article and Find Full Text PDF

Hypertension is the most common risk factor for cardiovascular disease, causing over 18 million deaths a year. Although the mechanisms controlling blood pressure (BP) in either sex remain largely unknown, T cells play a critical role in the development of hypertension. Further evidence supports a role for the immune system in contributing to sex differences in hypertension.

View Article and Find Full Text PDF

Necrosis is a pathological form of cell death that induces an inflammatory response, and immune cell activation contributes to the development and maintenance of hypertension. Necrosis was measured in kidney, spleen, and aorta of 12- to 13-week-old male and female SHRs (spontaneously hypertensive rats); male SHRs had greater renal necrotic cell death than female SHRs. Because male SHRs have a higher blood pressure (BP) and a more proinflammatory T-cell profile than female SHRs, the current studies tested the hypothesis that greater necrotic cell death in male SHRs exacerbates increases in BP and contributes to the proinflammatory T-cell profile.

View Article and Find Full Text PDF

Insulin is known to be an important regulator of a number of different channels and transporters in the kidney, but its role in the kidney to prevent Na and volume loss during the osmotic load after a meal has only recently been validated. With increasing numbers of people suffering from diabetes and hypertension, furthering our understanding of insulin signaling and renal Na handling in both normal and diseased states is essential for improving patient treatments and outcomes. The present review is focused on postprandial effects on Na reabsorption in the kidney and the role of the epithelial Na channels as an important channel contributing to insulin-mediated Na reclamation.

View Article and Find Full Text PDF

Insufficient autophagy has been proposed as a mechanism of cellular aging, as this leads to the accumulation of dysfunctional macromolecules and organelles. Premature vascular aging occurs in hypertension. In fact, many factors that contribute to the deterioration of vascular function as we age are accelerated in clinical and experimental hypertension.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers aim to improve kidney preservation solutions to extend organ viability during transplantation, with the University of Wisconsin (UW) solution being the current gold standard, despite its limitations.
  • A study involved harvesting kidneys from Sprague Dawley rats and dogs, investigating the impact of UW solution on epithelial Na channel (ENaC) activity, size, weight, and damage through various analytical methods.
  • Findings indicated that while kidney size and weight decreased and LDH levels increased during preservation, ENaC activity rose significantly, potentially affecting kidney function post-transplant.
View Article and Find Full Text PDF

In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects.

View Article and Find Full Text PDF

Recent studies have suggested that postprandial increases in insulin directly contribute to reduced urinary sodium excretion. An abundance of research supports the ability of insulin to augment epithelial sodium channel (ENaC) transport. This study hypothesized that ENaC contributes to the increase in renal sodium reabsorption following a meal.

View Article and Find Full Text PDF

Clinical studies indicate that salt-sensitive hypertension is more prevalent in women than in men. However, animal models of salt sensitivity have primarily focused on the mechanisms of salt sensitivity in male animals; therefore, elucidation of these mechanisms in female animal models is needed. We have previously shown that female Balb/C mice have higher aldosterone synthase expression and aldosterone production than males.

View Article and Find Full Text PDF

Hypertension is an important contributor to cognitive decline but the underlying mechanisms are unknown. Although much focus has been placed on the effect of hypertension on vascular function, less is understood of its effects on nonvascular cells. Because astrocytes and parenchymal arterioles (PA) form a functional unit (neurovascular unit), we tested the hypothesis that hypertension-induced changes in PA tone concomitantly increases astrocyte Ca .

View Article and Find Full Text PDF

This study used acute, renal artery insulin infusion in conscious rats to test the hypothesis that hyperinsulinemia attenuates glucose-induced natriuresis by a direct renal mechanism. We reported previously that hyperinsulinemia was required to prevent ad libitum eating or an acute glucose bolus from causing excessive renal sodium loss. Rats were instrumented with renal artery, aortic, and femoral vein catheters and Data Sciences International blood pressure telemeters and were housed in metabolic cages.

View Article and Find Full Text PDF