Liquid crystal elastomers (LCEs) have grown in popularity in recent years as a stimuli-responsive material for soft actuators and shape reconfigurable structures. To make these material systems electrically responsive, they must be integrated with soft conductive materials that match the compliance and deformability of the LCE. This study introduces a design and manufacturing methodology for combining direct ink write (DIW) 3D printing of soft, stretchable conductive inks with DIW-based "4D printing" of LCE to create fully integrated, electrically responsive, shape programmable matter.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2022
Liquid metal embedded elastomers (LMEEs) are composed of a soft polymer matrix embedded with droplets of metal alloys that are liquid at room temperature. These soft matter composites exhibit exceptional combinations of elastic, electrical, and thermal properties that make them uniquely suited for applications in flexible electronics, soft robotics, and thermal management. However, the fabrication of LMEE structures has primarily relied on rudimentary techniques that limit patterning to simple planar geometries.
View Article and Find Full Text PDF