EURASIP J Bioinform Syst Biol
December 2014
Motivation: A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Boolean networks are among the simplest of models, yet they have been shown to adequately model many of the complex dynamics of biological systems. In our recent work, we utilized a logic minimization approach to identify quality single variable targets for intervention from the state space of a Boolean network.
View Article and Find Full Text PDFBackground: Identifying similarities and differences in the molecular constitutions of various types of cancer is one of the key challenges in cancer research. The appearances of a cancer depend on complex molecular interactions, including gene regulatory networks and gene-environment interactions. This complexity makes it challenging to decipher the molecular origin of the cancer.
View Article and Find Full Text PDFPac Symp Biocomput
November 2013
Motivation: A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Good intervention targets are the "key players" in a system and have significant influence over other variables; in other words, in the context of diseases such as cancer, targeting these variables with treatments and interventions will provide the greatest effects because of their direct and indirect control over other parts of the system. Boolean networks are among the simplest of models, yet they have been shown to adequately model many of the complex dynamics of biological systems.
View Article and Find Full Text PDFLearning or inferring networks of genomic regulation specific to a cellular state, such as a subtype of tumor, can yield insight above and beyond that resulting from network-learning techniques which do not acknowledge the adaptive nature of the cellular system. In this study we show that Cellular Context Mining, which is based on a mathematical model of contextual genomic regulation, produces gene regulatory networks (GRNs) from steady-state expression microarray data which are specific to the varying cellular contexts hidden in the data; we show that these GRNs not only model gene interactions, but that they are also readily annotated with context-specific genomic information. We propose that these context-specific GRNs provide advantages over other techniques, such as clustering and Bayesian networks, when applied to gene expression data of cancer patients.
View Article and Find Full Text PDF