The recent COVID-19 pandemic and the prospect of future global pandemics highlight the long-standing need to passively eliminate viruses and bacteria on surfaces. Conventional antimicrobial surfaces and coatings are typically constrained by a trade-off between antimicrobial efficacy and physical durability. A biphasic polyurethane coating has been developed that breaks this trade-off by incorporating a durability-imparting polycarbonate (PC) discrete phase with a continuous poly(ethylene glycol) (PEG) transport phase that absorbs, stores, and releases antimicrobial active compounds for extended microbial inactivation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2021
A passive icephobic coating (τ < 20 kPa) is an enabling technology to many industries, including aerospace and energy and power generation, with recent efforts in materials research identifying strategies to achieve this low adhesion threshold. To better meet this need, we have combined low surface energy perfluoropolyether (PFPE) and hydrophilic poly(ethylene glycol) (PEG) species in a segmented polyurethane thermoplastic elastomer. Coating microstructure presents a segregated 3D morphology at the micron-scale (1-100 μm) with discrete PFPE and continuous PEG phases self-similar through the thickness.
View Article and Find Full Text PDF