Achieving net-zero greenhouse gas (GHG) emissions in dairy production will require >50% reduction in enteric methane (CH) emissions together with elimination of emissions from feed production, additional carbon sequestration, reduction in manure emissions, anaerobic digestion of manure, and decreased reliance on fossil fuel energy. Over past decades, improved production efficiency has reduced GHG intensity of milk production (i.e.
View Article and Find Full Text PDFLarge datasets allow estimation of feed required for individual milk components or body maintenance. Phenotypic regressions are useful for nutrition management, but genetic regressions are more useful in breeding programs. Dry matter intake records from 8,513 lactations of 6,621 Holstein cows were predicted from phenotypes or genomic evaluations for milk components and body size traits.
View Article and Find Full Text PDFResilience can be defined as the capacity to maintain performance or bounce back to normal functioning after a perturbation, and studying fluctuations in daily feed intake may be an effective way to identify resilient dairy cows. Our goal was to develop new phenotypes based on daily dry matter intake (DMI) consistency in Holstein cows, estimate genetic parameters and genetic correlations with feed efficiency and milk yield consistency, and evaluate their relationships with production, longevity, health, and reproduction traits. Data consisted of 397,334 daily DMI records of 6,238 lactating Holstein cows collected from 2007 to 2022 at 6 research stations across the United States.
View Article and Find Full Text PDFThe Resilient Dairy Genome Project (RDGP) is an international large-scale applied research project that aims to generate genomic tools to breed more resilient dairy cows. In this context, improving feed efficiency and reducing greenhouse gases from dairy is a high priority. The inclusion of traits related to feed efficiency (e.
View Article and Find Full Text PDFResidual feed intake (RFI) has been used as a measure of feed efficiency in farm animals. In lactating dairy cattle, RFI is typically obtained as the difference between dry matter intake observations and predictions from regression on known energy sinks, and effects of parity, days in milk, and cohort. The impact of parity (lactation number) on the estimation of RFI is not well understood, so the objectives of this study were to (1) evaluate alternative RFI models in which the energy sinks (metabolic body weight, body weight change, and secreted milk energy) were nested or not nested within parity, and (2) estimate variance components and genetic correlations for RFI across parities.
View Article and Find Full Text PDFWe evaluated the effects of 2 direct-fed microbial (DFM) supplements containing 4 native rumen microorganisms on the production of dairy cows. Ninety Holstein cows (43% primiparous) were fed a common diet. Mean days in milk, milk yield, and body weight at the beginning of the study (mean ± standard deviation) were 92 ± 23 d, 45 ± 10 kg/d, and 659 ± 86 kg, respectively.
View Article and Find Full Text PDFThe impact of genomic epistasis effects on the accuracy of predicting the phenotypic values of residual feed intake (RFI) in U.S. Holstein cows was evaluated using 6215 Holstein cows and 78,964 SNPs.
View Article and Find Full Text PDFOur objective was to supplement colostrum with n-3 fatty acids (FA) to provide anti-inflammatory mediators that may improve the immune response of neonatal calves. Elevated markers of inflammation have been associated with increased occurrence of calf disease in early life, thus decreasing animal productivity. We hypothesized that a colostrum supplement containing 60-mL of a 1:1 ratio fish:flaxseed oil blend with or without 200 mg of α-tocopherol might provide an advantageous start to early life by decreasing oxidative stress and regulating the inflammatory response.
View Article and Find Full Text PDFCalves may experience increased oxidative stress at birth through activation of metabolic and respiratory processes. Reducing oxidative stress may enhance calf viability in early life. Our objective was to determine the dose response to fish and flaxseed oil when supplemented in colostrum on concentrations of plasma fatty acid (FA), FA metabolites, and index of oxidative stress during the critical first week of life in calves to understand how supplementing n-3 FA may decrease oxidative stress.
View Article and Find Full Text PDFOur objective was to characterize the effects of supplementing newborn calves with n-3 fatty acids (FA) and α-tocopherol on blood lipid profiles and oxidant status in early life. Sixteen calves received 0 or 60 mL of 1:1 fish and flaxseed oil with 200 mg of α-tocopherol in 2.8 L of colostrum within 6 h after birth.
View Article and Find Full Text PDFAFEX treatment of crop residues can greatly increase their nutrient availability for ruminants. This study investigated the concentration of acetamide, an ammoniation byproduct, in AFEX-treated crop residues and in milk and meat from ruminants fed these residues. Acetamide concentrations in four AFEX-treated cereal crop residues were comparable and reproducible (4-7 mg/g dry matter).
View Article and Find Full Text PDFThe seasonal lack of availability of lush green forages can force dairy farmers in developing nations to rely on crop residues such as wheat and rice straw as the major feed source. We tested whether ammonia fiber expansion (AFEX) treatment of wheat straw would increase the energy available to Murrah buffalo and Karan-Fries cattle consuming 70% of their diet as wheat straw in India. Forty lactating animals of each species were blocked by parity and days in milk and randomly assigned to 1 of 4 treatment diets (n = 10).
View Article and Find Full Text PDFTranscriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments.
View Article and Find Full Text PDFA cDNA microarray resource enhanced for transcripts specific to the bovine mammary gland (BMAM) has been developed and used in pilot studies to examine gene expression profiles in the mammary gland. One goal driving development of this resource was to shed some light on the pathways and mechanisms specifically related to bovine mammary gland growth and development. To accomplish this, gene expression patterns from bovine adipose, liver, adrenal, lymph, spleen, thymus, gut, and developing mammary tissue were compared using the BMAM microarray.
View Article and Find Full Text PDF