Publications by authors named "Michael V Grandal"

The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist.

View Article and Find Full Text PDF

ADAM12 (A Disintegrin And Metalloprotease 12), a member of the ADAMs family of transmembrane proteins, is involved in ectodomain shedding, cell-adhesion and signaling, with important implications in cancer. Therefore, mechanisms that regulate the levels and activity of ADAM12 at the cell-surface are possibly crucial in these contexts. We here investigated internalization and subsequent recycling or degradation of ADAM12 as a potentially important regulatory mechanism.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is an important regulator of normal growth and differentiation, and it is involved in the pathogenesis of many cancers. Endocytic downregulation is central in terminating EGFR signaling after ligand stimulation. It has been shown that p38 MAPK activation also can induce EGFR endocytosis.

View Article and Find Full Text PDF

The potential benefits of drugs directly targeting the ErbB receptors for cancer therapy have led to an extensive development within this field. However, the clinical effects of ErbB receptor-targeting drugs in cancer treatment are limited due to a high frequency of resistance. It has been reported that, when inhibiting the epidermal growth factor receptor (EGFR) with the tyrosine kinase inhibitor gefitinib, increased activation of ErbB3 via MET, or by re-localization of ErbB3 mediates cell survival.

View Article and Find Full Text PDF

Most novel vaccines against infectious diseases are based on recombinant Ag; however, only few studies have compared Ag-specific immune responses induced by natural infection with that induced by the same Ag in a recombinant form. Here, we studied the epitope recognition pattern of the tuberculosis vaccine Ag, TB10.4, in a recombinant form, or when expressed by the pathogen Mycobacterium tuberculosis (M.

View Article and Find Full Text PDF

Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)-alpha causes receptor recycling. TGF-alpha therefore leads to continuous signalling and is a more potent mitogen than EGF.

View Article and Find Full Text PDF

Epsin consists of an epsin NH(2)-terminal homology domain that promotes interaction with phospholipids, several AP-2-binding sites, two clathrin-binding sequences and several Eps15 homology domain-binding motifs. Epsin additionally possesses ubiquitin-interacting motifs (UIMs) and has been demonstrated to bind ubiquitinated cargo. We therefore investigated whether epsin promoted clathrin-mediated endocytosis of the ubiquitinated EGF receptor (EGFR).

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) and other members of the EGFR/ErbB receptor family of receptor tyrosine kinases (RTKs) are important regulators of proliferation, angiogenesis, migration, tumorigenesis and metastasis. Overexpression, mutations, deletions and production of autocrine ligands contribute to aberrant activation of the ErbB proteins. The signalling output from EGFR is complicated given that other ErbB proteins are often additionally expressed and activated in the same cell, resulting in formation of homo-and/or heterodimers.

View Article and Find Full Text PDF

High ErbB2 levels are associated with cancer, and impaired endocytosis of ErbB2 could contribute to its overexpression. Therefore, knowledge about the mechanisms underlying endocytic down-regulation of ErbB2 is warranted. The C-terminus of ErbB2 can be cleaved after various stimuli, and after inhibition of HSP90 with geldanamycin this cleavage is accompanied by proteasome-dependent endocytosis of ErbB2.

View Article and Find Full Text PDF

EphA2 overexpression has been reported in many cancers and is believed to play an important role in tumor metastasis and angiogenesis. We show that the activated epidermal growth factor receptor (EGFR) and the cancer-specific constitutively active EGFR type III deletion mutant (EGFRvIII) induce the expression of EphA2 in mammalian cell lines, including the human cancer cell lines A431 and HN5. The regulation is partially dependent on downstream activation of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and is a direct effect on the EphA2 promoter.

View Article and Find Full Text PDF

EGFRvIII is a mutant variant of the epidermal growth factor receptor (EGFR) found exclusively in various cancer types. EGFRvIII lacks a large part of the extracellular domain and is unable to bind ligands; however, the receptor is constitutively phosphorylated and able to activate downstream signaling pathways. Failure to attenuate signaling by receptor down-regulation could be one of the major mechanisms by which EGFRvIII becomes oncogenic.

View Article and Find Full Text PDF