Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development.
View Article and Find Full Text PDFThe lymphatic vasculature provides an essential route to drain fluid, macromolecules, and immune cells from the interstitium as lymph, returning it to the bloodstream where the thoracic duct meets the subclavian vein. To ensure functional lymphatic drainage, the lymphatic system contains a complex network of vessels which has differential regulation of unique cell-cell junctions. The lymphatic endothelial cells lining initial lymphatic vessels form permeable "button-like" junctions which allow substances to enter the vessel.
View Article and Find Full Text PDFVascular smooth muscle cells (VSMC) play a critical role in the development and pathogenesis of intimal hyperplasia indicative of restenosis and other vascular diseases. Fragile-X related protein-1 (FXR1) is a muscle-enhanced RNA binding protein whose expression is increased in injured arteries. Previous studies suggest that FXR1 negatively regulates inflammation, but its causality in vascular disease is unknown.
View Article and Find Full Text PDFAppropriate cytoskeletal organization is essential for vascular smooth muscle cell (VSMC) conditions such as hypertension. This study identifies FXR1 as a key protein linking cytoskeletal dynamics with mRNA stability. RNA immunoprecipitation sequencing (RIP-seq) in human VSMCs identifies that FXR1 binds to mRNA associated with cytoskeletal dynamics, and FXR1 depletion decreases their mRNA stability.
View Article and Find Full Text PDFDyslipidemia, vascular inflammation, obesity, and insulin resistance often overlap and exacerbate each other. Mutations in low density lipoprotein receptor adaptor protein-1 (LDLRAP1) lead to LDLR malfunction and are associated with the autosomal recessive hypercholesterolemia disorder in humans. However, direct causality on atherogenesis in a defined preclinical model has not been reported.
View Article and Find Full Text PDFThe prevalence of obesity and associated cardiometabolic diseases continues to rise, despite efforts to improve global health. The adipose tissue is now regarded as an endocrine organ since its multitude of secretions, lipids chief among them, regulate systemic functions. The loss of normal adipose tissue phenotypic flexibility, especially related to lipid homeostasis, appears to trigger cardiometabolic pathogenesis.
View Article and Find Full Text PDFAngiogenesis is a vital biological process, and neovascularization is essential for the development, wound repair, and perfusion of ischemic tissue. Neovascularization and inflammation are independent biological processes that are linked in response to injury and ischemia. While clear that pro-inflammatory factors drive angiogenesis, the role of anti-inflammatory interleukins in angiogenesis remains less defined.
View Article and Find Full Text PDFIn this study, we have looked for an optimum media glucose concentration and compared glucose consumption in three vascular cell types, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs) with or without angiotensin II (AngII) stimulation. In a subconfluent 6-well experiment in 1 mL DMEM with a standard low (100 mg/dL), a standard high (450 mg/dL), or a mixed middle (275 mg/dL) glucose concentration, steady and significant glucose consumption was observed in all cell types. After 48-h incubation, media that contained low glucose was reduced to almost 0 mg/dL, media that contained high glucose remained significantly higher at ∼275 mg/dL, and media that contained middle glucose remained closer to physiological range.
View Article and Find Full Text PDFAs many as 70% of cells in atherosclerotic plaque are vascular smooth muscle cell (VSMC) in origin, and pathways and proteins which regulate VSMC migration, proliferation, and phenotype modulation represent novel targets for rational drug design to reduce atherosclerotic vascular disease. In this volume of Clinical Science, Karle et al. demonstrate that tumor suppressor, promyelocytic leukemia protein (PML) plays an important role in regulation of VSMC phenotype and response to inflammatory stimuli (Clin Sci (2021) 135(7), 887-905; DOI: 10.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2021
Several lines of preclinical and clinical research have confirmed that chronic low-grade inflammation of adipose tissue is mechanistically linked to metabolic disease and organ tissue complications in the overweight and obese organism. Despite this widely confirmed paradigm, numerous open questions and knowledge gaps remain to be investigated. This is mainly due to the intricately intertwined cross-talk of various pro- and anti-inflammatory signaling cascades involved in the immune response of expanding adipose depots, particularly the visceral adipose tissue.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2020
The inflammatory response is a complex, tightly regulated process activated by tissue wounding, foreign body invasion, and sterile inflammation. Over the decades, great progress has been made to advance our understanding of this process. One often overlooked aspect of inflammation is its sequel: resolution.
View Article and Find Full Text PDFCardiovascular disease is the leading cause of morbidity and mortality in the Western and developing world, and the incidence of cardiovascular disease is increasing with the longer lifespan afforded by our modern lifestyle. Vascular diseases including coronary heart disease, high blood pressure, and stroke comprise the majority of cardiovascular diseases, and therefore represent a significant medical and socioeconomic burden on our society. It may not be surprising that these conditions overlap and potentiate each other when we consider the many cellular and molecular similarities between them.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2019
Objective: Stress granules (SGs) are dynamic cytoplasmic aggregates containing mRNA, RNA-binding proteins, and translation factors that form in response to cellular stress. SGs have been shown to contribute to the pathogenesis of several human diseases, but their role in vascular diseases is unknown. This study shows that SGs accumulate in vascular smooth muscle cells (VSMCs) and macrophages during atherosclerosis.
View Article and Find Full Text PDFInterleukin enhancer-binding factor 3 (ILF3), an RNA-binding protein, is best known for its role in innate immunity by participation in cellular antiviral responses. A role for ILF3 in angiogenesis is unreported. ILF3 expression in CD31 capillaries of hypoxic cardiac tissue was detected by immunohistochemistry.
View Article and Find Full Text PDFThis work identifies the fragile-X-related protein (FXR1) as a reciprocal regulator of HuR target transcripts in vascular smooth muscle cells (VSMCs). FXR1 was identified as an HuR-interacting protein by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The HuR-FXR1 interaction is abrogated in RNase-treated extracts, indicating that their association is tethered by mRNAs.
View Article and Find Full Text PDFCardiovascular disease remains a major medical and socioeconomic burden in developed and developing countries and will increase with an aging and increasingly sedentary society. Many vascular diseases and atherosclerotic vascular disease, in particular, are essentially inflammatory disorders, involving multiple cell types. Communication between these cells is initiated and sustained by a complex network of cytokines and their receptors.
View Article and Find Full Text PDFObjective: To test the hypothesis that loss of IL-19 (interleukin-19) exacerbates atherosclerosis. APPROACH AND RESULTS: mice were crossed into (low-density lipoprotein receptor knock out) mice. Double knockout (dKO) mice had increased plaque burden in aortic arch and root compared with controls after 14 weeks of high-fat diet (HFD).
View Article and Find Full Text PDFDespite advances in prevention and treatment, vascular diseases continue to account for significant morbidity and mortality in the developed world. Incidence is expected to worsen as the number of patients with common co-morbidities linked with atherosclerotic vascular disease, such as obesity and diabetes, continues to increase, reaching epidemic proportions. Atherosclerosis is a lipid-driven vascular inflammatory disease involving multiple cell types in various stages of inflammation, activation, apoptosis, and necrosis.
View Article and Find Full Text PDFCardiovascular disease remains a major medical and socioeconomic burden in developed and developing societies, and will increase with an aging and increasingly sedentary society. Vascular disease and atherosclerotic vascular syndromes are essentially inflammatory disorders, and transcriptional and post-transcriptional processes play essential roles in the ability of resident vascular and inflammatory cells to adapt to environmental stimuli. The regulation of mRNA translocation, stability, and translation are key processes of post-transcriptional regulation that permit these cells to rapidly respond to inflammatory stimuli.
View Article and Find Full Text PDFWorld J Cardiol
August 2017
Aim: To investigate the role of interleukin-19 (IL-19) in a murine model of female-dominant heart failure (HF).
Methods: Expression of one copy of a phosphorylation-deficient cyclic adenosine monophosphate response-element binding protein (dnCREB) causes HF, with accelerated morbidity and mortality in female mice compared to males. We assessed expression of IL-19, its receptor isoforms IL-20R α/β, and downstream IL-19 signaling in this model of female-dominant HF.
The transformation of vascular smooth muscle cells [VSMC] into foam cells leading to increased plaque size and decreased stability is a key, yet understudied step in atherogenesis. We reported that Interleukin-19 (IL-19), a novel, anti-inflammatory cytokine, attenuates atherosclerosis by anti-inflammatory effects on VSMC. In this work we report that IL-19 induces expression of miR133a, a muscle-specific miRNA, in VSMC.
View Article and Find Full Text PDFVisceral adipose tissue is a primary site of chronic inflammation in obesity and may contribute to systemic inflammation and development of atherosclerotic vascular disease. Few studies identify molecular mechanisms and secretory pathways which mediate this process. In this edition of Clinical Science, Kwok et al.
View Article and Find Full Text PDFVascular smooth muscle contraction is primarily regulated by phosphorylation of myosin light chain. There are also modulatory pathways that control the final level of force development. We tested the hypothesis that protein kinase C (PKC) and mitogen-activated protein (MAP) kinase modulate vascular smooth muscle activity via effects on MAP kinase phosphatase-1 (MKP-1).
View Article and Find Full Text PDF