Publications by authors named "Michael Tukalo"

Leucyl-tRNA synthetase (LeuRS) is clinically validated molecular target for antibiotic development. Recently, we have reported several classes of small-molecular inhibitors targeting aminoacyl-adenylate binding site of Mycobacterium tuberculosis LeuRS with antibacterial activity. In this work, we performed in silico site-directed mutagenesis of M.

View Article and Find Full Text PDF

Staphylococcus aureus is one of the most common nosocomial biofilm-forming pathogens worldwide that has developed resistance mechanisms against majority of the antibiotics. Therefore, the search of novel antistaphylococcal agents with unexploited mechanisms of action, especially with antibiofilm activity, is of great interest. Seryl-tRNA synthetase is recognized as a promising drug target for the development of antibacterials.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases are crucial enzymes involved in protein synthesis and various cellular physiological reactions. Aside from their standard role in linking amino acids to the corresponding tRNAs, they also impact protein homeostasis by controlling the level of soluble amino acids within the cell. For instance, leucyl-tRNA synthetase (LARS1) acts as a leucine sensor for the mammalian target of rapamycin complex 1 (mTORC1), and may also function as a probable GTPase-activating protein (GAP) for the RagD subunit of the heteromeric activator of mTORC1.

View Article and Find Full Text PDF

Methionyl-tRNA synthetase (MetRS) is an attractive molecular target for antibiotic discovery. Recently, we have developed several classes of small-molecular inhibitors of MetRS possessing antibacterial activity. In this article, we performed site-directed mutagenesis of aminoacyl-adenylate binding site of MetRS in order to identify crucial amino acid residues for substrate interaction.

View Article and Find Full Text PDF

The most serious challenge in the treatment of tuberculosis is the multidrug resistance of to existing antibiotics. As a strategy to overcome resistance we used a multitarget drug design approach. The purpose of the work was to discover dual-targeted inhibitors of mycobacterial LeuRS and MetRS with machine learning.

View Article and Find Full Text PDF

is one of the most dangerous nosocomial pathogens which cause a wide variety of hospital-acquired infectious diseases. is considered as a superbug due to the development of multidrug resistance to all current therapeutic regimens. Therefore, the discovery of antibiotics with novel mechanisms of action to combat staphylococcal infections is of high priority for modern medicinal chemistry.

View Article and Find Full Text PDF

Antibiotic resistance is a major problem of tuberculosis treatment. This provides the stimulus for the search of novel molecular targets and approaches to reduce or forestall resistance emergence in Mycobacterium tuberculosis. Earlier, we discovered a novel small-molecular inhibitor among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles targeting simultaneously two enzymes-mycobacterial leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase (MetRS), which are promising molecular targets for antibiotic development.

View Article and Find Full Text PDF

An important aspect of molecular mechanics simulations of a protein structure and ligand binding often involves the generation of reliable force fields for nonstandard residues and ligands. We consider the aminoacyl-tRNA synthetase (AaRS) system that involves nucleic acid and amino acid derivatives, obtaining force field atomic charges using the restrained electrostatic potential (RESP) approach. These charges are shown to predict observed properties of the post-transfer editing reaction in this system, in contrast to simulations performed using approximate charges conceived based upon standard charges for related systems present in force field databases.

View Article and Find Full Text PDF

Effective treatment of tuberculosis is challenged by the rapid development of () multidrug resistance that presumably could be overcome with novel multi-target drugs. Aminoacyl-tRNA synthetases (AARSs) are an essential part of protein biosynthesis machinery and attractive targets for drug discovery. Here, we experimentally verify a hypothesis of simultaneous targeting of structurally related AARSs by a single inhibitor.

View Article and Find Full Text PDF

The homochirality of amino acids is vital for the functioning of the translation apparatus. l-Amino acids predominate in proteins and d-amino acids usually represent diverse regulatory functional physiological roles in both pro- and eukaryotes. Aminoacyl-tRNA-synthetases (aaRSs) ensure activation of proteinogenic or nonproteinogenic amino acids and attach them to cognate or noncognate tRNAs.

View Article and Find Full Text PDF
Article Synopsis
  • d-aminoacyl-tRNA-deacylase (DTD) prevents incorrect incorporation of d-amino acids into proteins by breaking the bond between misattached amino acids and tRNAs during translation.
  • Recent biochemical and computational studies revealed a new substrate-assisted mechanism for the hydrolysis of d-Tyr-tRNA by DTD, highlighting the role of certain functional elements in the reaction.
  • Key findings indicate that the d-Tyr amino group acts as a general base in the hydrolysis process, with specific amino acid residues of the enzyme aiding in substrate coordination, thus enhancing understanding of translation fidelity.
View Article and Find Full Text PDF

Aminoacyl-tRNA-synthetases are crucial enzymes for initiation step of translation. Possessing editing activity, they protect living cells from misincorporation of non-cognate and non-proteinogenic amino acids into proteins. Tyrosyl-tRNA synthetase (TyrRS) does not have such editing properties, but it shares weak stereospecificity in recognition of d-/l-tyrosine (Tyr).

View Article and Find Full Text PDF

The accuracy of protein synthesis is provided by the editing functions of aminoacyl-tRNA synthetases (aaRSs), a mechanism that eliminates misactivated amino acids or mischarged tRNAs. Despite research efforts, some molecular bases of these mechanisms are still unclear. The post-transfer editing pathway of leucyl-tRNA synthetase (LeuRS) carried out in a special insertion domain (the Connective Polypeptide 1 or CP1), as editing domain.

View Article and Find Full Text PDF

Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria Enterococcus faecalis, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification.

View Article and Find Full Text PDF

Leucyl-tRNA synthetase (LeuRS) has a specific post-transfer editing activity directed against mischarged isoleucine and similar noncognate amino acids. We describe the post-transfer-editing and product complexes of Thermus thermophilus LeuRS (LeuRSTT) with tRNA(Leu) at 2.9- to 3.

View Article and Find Full Text PDF

The archaeal/eukaryotic tyrosyl-tRNA synthetase (TyrRS)-tRNA(Tyr) pairs do not cross-react with their bacterial counterparts. This 'orthogonal' condition is essential for using the archaeal pair to expand the bacterial genetic code. In this study, the structure of the Methanococcus jannaschii TyrRS-tRNA(Tyr)-L-tyrosine complex, solved at a resolution of 1.

View Article and Find Full Text PDF

The aminoacyl-tRNA synthetases link tRNAs with their cognate amino acid. In some cases, their fidelity relies on hydrolytic editing that destroys incorrectly activated amino acids or mischarged tRNAs. We present structures of leucyl-tRNA synthetase complexed with analogs of the distinct pre- and posttransfer editing substrates.

View Article and Find Full Text PDF

Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4.

View Article and Find Full Text PDF