Publications by authors named "Michael Trogdon"

In drug development, quantitative systems pharmacology (QSP) models are becoming an increasingly important mathematical tool for understanding response variability and for generating predictions to inform development decisions. Virtual populations are essential for sampling uncertainty and potential variability in QSP model predictions, but many clinical efficacy endpoints can be difficult to capture with QSP models that typically rely on mechanistic biomarkers. In oncology, challenges are particularly significant when connecting tumor size with time-to-event endpoints like progression-free survival while also accounting for censoring due to consent withdrawal, loss in follow-up, or safety criteria.

View Article and Find Full Text PDF

Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration.

View Article and Find Full Text PDF

The combination of KRAS G12C inhibitors with EGFR inhibitors has reproducibly been shown to be beneficial. Here, we identify another benefit of this combination: it effectively inhibits both wild-type and mutant RAS. We believe that targeting both mutant and wild-type RAS helps explain why this combination of inhibitors is effective.

View Article and Find Full Text PDF

Many cellular processes require cell polarization to be maintained as the cell changes shape, grows or moves. Without feedback mechanisms relaying information about cell shape to the polarity molecular machinery, the coordination between cell polarization and morphogenesis, movement or growth would not be possible. Here we theoretically and computationally study the role of a genetically-encoded mechanical feedback (in the Cell Wall Integrity pathway) as a potential coordination mechanism between cell morphogenesis and polarity during budding yeast mating projection growth.

View Article and Find Full Text PDF

The localization (or polarization) of proteins on the membrane during the mating of budding yeast (Saccharomyces cerevisiae) is an important model system for understanding simple pattern formation within cells. While there are many existing mathematical models of polarization, for both budding and mating, there are still many aspects of this process that are not well understood. In this paper we set out to elucidate the effect that the geometry of the cell can have on the dynamics of certain models of polarization.

View Article and Find Full Text PDF

The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedback coordinating cell wall assembly and expansion is essential to sustain mating projection growth in budding yeast (Saccharomyces cerevisiae).

View Article and Find Full Text PDF

Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling.

View Article and Find Full Text PDF

We have developed a method for modeling spatial stochastic biochemical reactions in complex, three-dimensional, and time-dependent domains using the reaction-diffusion master equation formalism. In particular, we look to address the fully coupled problems that arise in systems biology where the shape and mechanical properties of a cell are determined by the state of the biochemistry and vice versa. To validate our method and characterize the error involved, we compare our results for a carefully constructed test problem to those of a microscale implementation.

View Article and Find Full Text PDF