Fragile X syndrome is a neurodevelopmental disorder caused by silencing of the fragile X messenger ribonucleotide gene. Patients display a wide spectrum of symptoms ranging from intellectual and learning disabilities to behavioural challenges including autism spectrum disorder. In addition to this, patients also display a diversity of symptoms due to mosaicism.
View Article and Find Full Text PDFMany available drugs have been repurposed as treatments for neurodevelopmental disorders. In the specific case of fragile X syndrome, many clinical trials of available drugs have been conducted with the goal of disease modification. In some cases, detailed understanding of basic disease mechanisms has guided the choice of drugs for clinical trials, and several notable successes in fragile X clinical trials have led to common use of drugs such as minocycline in routine medical practice.
View Article and Find Full Text PDFFragile-X syndrome (FXS) patients display intellectual disability and autism spectrum disorder due to silencing of the X-linked, fragile-X mental retardation-1 (FMR1) gene. Dysregulation of cAMP metabolism is a consistent finding in patients and in the mouse and fly FXS models. We therefore explored if BPN14770, a prototypic phosphodiesterase-4D negative allosteric modulator (PDE4D-NAM) in early human clinical trials, might provide therapeutic benefit in the mouse FXS model.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39-43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS).
View Article and Find Full Text PDFFragile X syndrome (FXS) is associated with a complex but relatively consistent psychiatric phenotype. Recent research has suggested neural substrates for the behavioral abnormalities typically seen in FXS, and enhanced treatment strategies for managing disabling psychiatric comorbidity. While disease-specific, and possibly disease-modifying, therapeutics are being developed for FXS, currently available psychiatric medications can provide significant symptomatic relief of the hyperactivity, anxiety disorders, and affective disturbances often seen in the course of FXS.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the leading inherited cause of mental retardation and autism spectrum disorders worldwide. It presents with a distinct behavioral phenotype which overlaps significantly with that of autism. Unlike autism and most common psychiatric disorders, the neurobiology of fragile X is relatively well understood.
View Article and Find Full Text PDFFragile X syndrome is the leading single gene cause of intellectual disabilities. Treatment of a Drosophila model of Fragile X syndrome with metabotropic glutamate receptor (mGluR) antagonists or lithium rescues social and cognitive impairments. A hallmark feature of the Fragile X mouse model is enhanced mGluR-dependent long-term depression (LTD) at Schaffer collateral to CA1 pyramidal synapses of the hippocampus.
View Article and Find Full Text PDFBackground: Fragile X syndrome (FXS) is a disorder characterized by a variety of disabilities, including cognitive deficits, attention-deficit/hyperactivity disorder, autism, and other socio-emotional problems. It is hypothesized that the absence of the fragile X mental retardation protein (FMRP) leads to higher levels of matrix metallo-proteinase-9 activity (MMP-9) in the brain. Minocycline inhibits MMP-9 activity, and alleviates behavioural and synapse abnormalities in fmr1 knockout mice, an established model for FXS.
View Article and Find Full Text PDFThe FMR1 mutations can cause a variety of disabilities, including cognitive deficits, attention-deficit/hyperactivity disorder, autism, and other socioemotional problems, in individuals with the full mutation form (fragile X syndrome) and distinct difficulties, including primary ovarian insufficiency, neuropathy and the fragile X-associated tremor/ataxia syndrome, in some older premutation carriers. Therefore, multigenerational family involvement is commonly encountered when a proband is identified with a FMR1 mutation. Studies of metabotropic glutamate receptor 5 pathway antagonists in animal models of fragile X syndrome have demonstrated benefits in reducing seizures, improving behavior, and enhancing cognition.
View Article and Find Full Text PDF