The Blue Light Using FAD (BLUF) photoreceptor utilizes a noncovalently bound FAD to absorb light and trigger the initial ultrafast events in receptor activation. FAD undergoes 1 and 2 electron reduction as an enzyme redox cofactor, and studies on the BLUF photoreceptor PixD revealed the formation of flavin radicals (FAD and FADH) during the photocycle, supporting a general mechanism for BLUF operation that involves PCET from a conserved Tyr to the oxidized FAD. However, no radical intermediates are observed in the closely related BLUF proteins AppA and BlsA, and replacing the conserved Tyr with fluoro-Tyr analogs that increase the acidity of the phenol OH has a minor effect on AppA photoactivation in contrast to PixD where the photocycle is halted at FAD.
View Article and Find Full Text PDFDonor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a -Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center.
View Article and Find Full Text PDFThe DNA binding and cellular uptake of the lambda enantiomer of two bis-tetraazaphenanthrene (TAP) Ru(II) polypyridyl complexes containing either a linear dppn () or a hooked bdppz () benzodipyridophenazine ligand are reported, and the role of different charge-transfer states of the structural isomers in the photo-oxidation of guanine is explored. Both complexes possess characteristic metal-to-ligand charge-transfer (MLCT) bands between 400 and 500 nm and emission at ca. 630 nm in an aerated aqueous solution.
View Article and Find Full Text PDFResonance Raman spectroscopy can provide insights into complex reaction mechanisms by selectively enhancing the signals of specific molecular species. In this work, we demonstrate that, by changing the excitation wavelength, Raman bands of different intermediates in the methanol-to-hydrocarbons reactions can be identified. We show in particular how UV excitation enhances signals from short-chain olefins and cyclopentadienyl cations during the induction period, while visible excitation better detects later-stage aromatics.
View Article and Find Full Text PDFMn-catalysed reactions offer great potential in synthetic organic and organometallic chemistry and the success of Mn carbonyl complexes as (pre)catalysts hinges on their stabilisation by strong field ligands enabling Mn(i)-based, redox neutral, catalytic cycles. The mechanistic processes underpinning the activation of the ubiquitous Mn(0) (pre)catalyst [Mn(CO)] in C-H bond functionalisation reactions is now reported for the first time. By combining time-resolved infra-red (TRIR) spectroscopy on a ps-ms timescale and studies using infra-red spectroscopy, insight into the microscopic bond activation processes which lead to the catalytic activity of [Mn(CO)] has been gained.
View Article and Find Full Text PDFCombining pulsed laser heating and time-resolved infrared (TR-IR) absorption spectroscopy provides a means of initiating and studying thermally activated chemical reactions and diffusion processes in heterogeneous catalysts on timescales from nanoseconds to seconds. To this end, we investigated single pulse and burst laser heating in zeolite catalysts under realistic conditions using TR-IR spectroscopy. 1 ns, 70 μJ, 2.
View Article and Find Full Text PDFWe report on an ultrafast infrared optical parametric chirped-pulse amplifier (OPCPA), pumped by a 200-W thin-disk Yb-based regenerative amplifier at a repetition rate of 100 kHz. The OPCPA is tunable in the spectral range 1.4-3.
View Article and Find Full Text PDFConformational templating of conjugated polyelectrolytes with single-stranded DNAs (ssDNAs) has the prospect of tailoring excited state dynamics for specific optoelectronic applications. We use ultrafast time-resolved infrared spectroscopy to study the photophysics of a cationic polythiophene assembled with different ssDNAs, inducing distinct conformations (flexible disordered structures vs more rigid complexes with increased backbone planarity). Intrachain polarons are always produced upon selective excitation of the polymer, the extent being dependent on backbone torsional order.
View Article and Find Full Text PDFThe nitrile containing Ru(II)polypyridyl complex [Ru(phen)(11,12-dCN-dppz)] () is shown to act as a sensitive infrared probe of G-quadruplex (G4) structures. UV-visible absorption spectroscopy reveals enantiomer sensitive binding for the hybrid and antiparallel G4s formed by the human telomer sequence d[AG(TTAG)]. Time-resolved infrared (TRIR) of upon 400 nm excitation indicates dominant interactions with the guanine bases in the case of Λ-, Δ-, and Λ-/ binding, whereas Δ-/ binding is associated with interactions with thymine and adenine bases in the loop.
View Article and Find Full Text PDFCorrection for 'Time-resolved infra-red studies of photo-excited porphyrins in the presence of nucleic acids and in HeLa tumour cells: insights into binding site and electron transfer dynamics' by Páraic M. Keane , , 2022, , 27524-27531, https://doi.org/10.
View Article and Find Full Text PDFAn investigation into species formed following precatalyst activation in Mn-catalyzed C-H bond functionalization reactions is reported. Time-resolved infrared spectroscopy demonstrates that light-induced CO dissociation from precatalysts [Mn(C^N)(CO)] (C^N = cyclometalated 2-phenylpyridine (), cyclometalated 1,1-bis(4-methoxyphenyl)methanimine ()) in a toluene solution of 2-phenylpyridine () or 1,1-bis(4-methoxyphenyl)methanimine () results in the initial formation of solvent complexes -[Mn(C^N)(CO)(toluene)]. Subsequent solvent substitution on a nanosecond time scale then yields -[Mn(C^N)(CO)(κ-()-)] and -[Mn(C^N)(CO)(κ-()-)], respectively.
View Article and Find Full Text PDFRaman spectroscopy has found its way into a wide range of applications and is successfully applied for qualitative and quantitative studies. Despite significant technical progress over the last few decades, there are still some challenges that limit its more widespread usage. This paper presents a holistic approach to addressing simultaneously the problems of fluorescence interference, sample heterogeneity, and laser-induced sample heating.
View Article and Find Full Text PDFMn(I) C-H functionalization of coumarins provides a versatile and practical method for the rapid assembly of fused polycyclic pyridinium-containing coumarins in a regioselective manner. The synthetic strategy enables application of bench-stable organomanganese reagents in both photochemical- and thermal-promoted reactions. The cyclomanganated intermediates, and global reaction system, provide an ideal testing ground for structural characterization of the active Mn(I) carbonyl-containing species, including transient species observable by ultra-fast time-resolved spectroscopic methods.
View Article and Find Full Text PDFG-quadruplexes are emerging targets in cancer research and understanding how diagnostic probes bind to DNA G-quadruplexes in solution is critical to the development of new molecular tools. In this study the binding of an enantiopure NIR emitting [Os(TAP) (dppz)] complex to different G-quadruplex structures formed by human telomer (hTel) and cMYC sequences in solution is reported. The combination of NMR and time-resolved infrared spectroscopic techniques reveals the sensitivity of the emission response to subtle changes in the binding environment of the complex.
View Article and Find Full Text PDFCationic porphyrins based on the 5,10,15,20--(tetrakis-4--methylpyridyl) core (TMPyP4) have been studied extensively over many years due to their strong interactions with a variety of nucleic acid structures, and their potential use as photodynamic therapeutic agents and telomerase inhibitors. In this paper, the interactions of metal-free TMPyP4 and Pt(II)TMPyP4 with guanine-containing nucleic acids are studied for the first time using time-resolved infrared spectroscopy (TRIR). In DO solution (where the metal-free form exists as DTMPyP4) both compounds yielded similar TRIR spectra (between 1450-1750 cm) following pulsed laser excitation in their Soret B-absorption bands.
View Article and Find Full Text PDFMigratory insertion (MI) is one of the most important processes underpinning the transition metal-catalysed formation of C-C and C-X bonds. In this work, a comprehensive model of MI is presented, based on the direct observation of the states involved in the coupling of alkynes with cyclometallated ligands, augmented with insight from computational chemistry. Time-resolved spectroscopy demonstrates that photolysis of complexes [Mn(C^N)(CO)] (C^N = cyclometalated ligand) results in ultra-fast dissociation of a CO ligand.
View Article and Find Full Text PDFThe hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time.
View Article and Find Full Text PDFBinding of drugs to blood serum proteins can influence both therapeutic efficacy and toxicity. The ability to measure the concentrations of protein-bound drug molecules quickly and with limited sample preparation could therefore have considerable benefits in biomedical and pharmaceutical applications. Vibrational spectroscopies provide data quickly but are hampered by complex, overlapping protein amide I band profiles and water absorption.
View Article and Find Full Text PDFExcited-state character and dynamics of two 6-(dimethylamino)-2-acylnaphthalene dyes (Prodan and Badan-SCHCHOH) were studied by picosecond time-resolved IR spectroscopy (TRIR) in solvents of different polarity and relaxation times: hexane, CDOD, and glycerol-. In all these solvents, near-UV excitation initially produced the same S(ππ*) excited state characterized by a broad TRIR signal. A very fast decay (3, ∼100 ps) followed in hexane, whereas conversion to a distinct IR spectrum with a ν(C═O) band downshifted by 76 cm occurred in polar/H-bonding solvents, slowing down on going from CDOD (1, 23 ps) to glycerol- (5.
View Article and Find Full Text PDFBinuclear Rh(I) and Ir(I) TMB (2,5-dimethyl-2,5-diisocyanohexane) and dimen (1,8-diisocyanomenthane) complexes possess dσ*pσ and dπpσ singlet and triplet excited states that can be selectively excited in the visible and UV spectral regions. Using perturbational spin-orbit TDDFT, we unraveled the detailed character and spin mixing of these electronic transitions and found that delocalization of pσ and dπ orbitals over C≡N- groups makes C≡N stretching vibrations sensitive reporters of electron density and structural changes upon electronic excitation. Picosecond time-resolved infrared spectra measured after visible light, 375 nm, and 316 nm excitation revealed excitation-wavelength-dependent deactivation cascades.
View Article and Find Full Text PDFAssessment of the DNA photo-oxidation and synthetic photocatalytic activity of chromium polypyridyl complexes is dominated by consideration of their long-lived metal-centered excited states. Here we report the participation of the excited states of [Cr(TMP)dppz] () (TMP = 3,4,7,8-tetramethyl-1,10-phenanthroline; dppz = dipyrido[3,2-:2',3'-]phenazine) in DNA photoreactions. The interactions of enantiomers of with natural DNA or with oligodeoxynucleotides with varying AT content (0-100%) have been studied by steady state UV/visible absorption and luminescence spectroscopic methods, and the emission of is found to be quenched in all systems.
View Article and Find Full Text PDFChanges in the structural dynamics of double stranded (ds)DNA upon ligand binding have been linked to the mechanism of allostery without conformational change, but direct experimental evidence remains elusive. To address this, a combination of steady state infrared (IR) absorption spectroscopy and ultrafast temperature jump IR absorption measurements has been used to quantify the extent of fast (∼100 ns) fluctuations in (ds)DNA·Hoechst 33258 complexes at a range of temperatures. Exploiting the direct link between vibrational band intensities and base stacking shows that the absolute magnitude of the change in absorbance caused by fast structural fluctuations following the temperature jump is only weakly dependent on the starting temperature of the sample.
View Article and Find Full Text PDFRuthenium polypyridyl complexes which can sensitise the photo-oxidation of nucleic acids and other biological molecules show potential for photo-therapeutic applications. In this article a combination of transient visible absorption (TrA) and time-resolved infra-red (TRIR) spectroscopy are used to compare the photo-oxidation of guanine by the enantiomers of [Ru(TAP)(dppz)] in both polymeric {poly(dG-dC), poly(dA-dT) and natural DNA} and small mixed-sequence duplex-forming oligodeoxynucleotides. The products of electron transfer are readily monitored by the appearance of a characteristic TRIR band centred at 1700 cm for the guanine radical cation and a band centered at 515 nm in the TrA for the reduced ruthenium complex.
View Article and Find Full Text PDF