Long noncoding RNAs (lncRNAs) are expressed in many brain circuits and types of neurons; nevertheless, their functional significance for normal brain functions remains elusive. Here, we study the functions in the central nervous system of Silc1, an lncRNA we have shown previously to be important for neuronal regeneration in the peripheral nervous system. We found that Silc1 is rapidly and strongly induced in the hippocampus upon exposure to novelty and is required for efficient spatial learning.
View Article and Find Full Text PDFThe initial and significant event developed in ischemic stroke is the sudden decrease in blood flow and oxygen supply to brain tissue, leading to dysfunction of the mitochondria. Many attempts were and are being made to develop new drugs and treatments that will save the ischemic brain, but the efficacy is not optimal and in many patients, irreversible damage to the brain will persist. We review a unique approach to evaluate mitochondrial function and microcirculatory hemodynamic in real time in vivo.
View Article and Find Full Text PDFParkinson's disease (PD) and related synucleinopathies are characterized by extensive neuronal cell loss, which is potentially triggered by α-synuclein misfolding and aggregation. Therefore it is reasonable to suggest that treatments targeting α-synuclein could reduce its levels and toxicity, rescue neuronal cells and halt the neurodegeneration process. Several approaches to decrease α-synuclein levels were employed thus far, mainly by using β-synuclein, another protein from the same family, or immunotherapies.
View Article and Find Full Text PDFObject: This study evaluated a chitosan tube for regeneration of the injured peripheral nerve in a rodent transected sciatic nerve model in comparison to autologous nerve graft repair.
Methods: Chitosan hollow tube was used to bridge a 10-mm gap between the proximal and distal ends in 11 rats. In the control group, an end-to-end coaptation of 10-mm long autologous nerve graft was performed in 10 rats for nerve reconstruction.
Background: Under O(2) imbalance in the body, blood redistribution occurs between more vital organs and less vital organs. This response is defined as the "brain-sparing effect". The study's aim was to develop a new rat model for simultaneous real-time monitoring of tissue viability in a highly vital organ, the brain, and a less vital organ, the small intestine, under various metabolic perturbations and emergency-like situations.
View Article and Find Full Text PDF