Zika virus (ZIKV) infection during pregnancy poses significant threats to maternal and fetal health, leading to intrauterine fetal demise and severe developmental malformations that constitute congenital Zika syndrome (CZS). As such, the development of a safe and effective ZIKV vaccine is a critical public health priority. However, the safety and efficacy of such a vaccine during pregnancy remain uncertain.
View Article and Find Full Text PDFZika virus (ZIKV) is a significant threat to pregnant women and their fetuses as it can cause severe birth defects and congenital neurodevelopmental disorders, referred to as congenital Zika syndrome (CZS). Thus, a safe and effective ZIKV vaccine for pregnant women to prevent in utero ZIKV infection is of utmost importance. Murine models of ZIKV infection are limited by the fact that immunocompetent mice are resistant to ZIKV infection.
View Article and Find Full Text PDFZika virus (ZIKV) infection during pregnancy causes severe developmental defects in newborns, termed congenital Zika syndrome (CZS). Factors contributing to a surge in ZIKV-associated CZS are poorly understood. One possibility is that ZIKV may exploit the antibody-dependent enhancement of infection mechanism, mediated by cross-reactive antibodies from prior dengue virus (DENV) infection, which may exacerbate ZIKV infection during pregnancy.
View Article and Find Full Text PDFZika virus (ZIKV) is a mosquito-borne arbovirus that can cause severe congenital birth defects. The utmost goal of ZIKV vaccines is to prevent both maternal-fetal infection and congenital Zika syndrome. A Zika purified inactivated virus (ZPIV) was previously shown to be protective in non-pregnant mice and rhesus macaques.
View Article and Find Full Text PDFThe herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals.
View Article and Find Full Text PDFZika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise.
View Article and Find Full Text PDFCD4+ T cells mediate protection against Mycobacterium tuberculosis (Mtb); however, the phenotype of protective T cells is undefined, thereby confounding vaccination efforts. IL-27 is highly expressed during human tuberculosis (TB), and absence of IL-27R (Il27ra) specifically on T cells results in increased protection. IL-27R deficiency during chronic Mtb infection does not impact antigen-specific CD4+ T cell number but maintains programmed death-1 (PD-1), CD69, and CD127 expression while reducing T-bet and killer cell lectin-like receptor G1 (KLRG1) expression.
View Article and Find Full Text PDFCell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb) infection in mice that have B cells but which lack secretory immunoglobulin (AID(-/-)µS(-/-)mice).
View Article and Find Full Text PDFImmunomodulatory agents potentially represent a new class of broad-spectrum antimicrobials. Here, we demonstrate that prophylaxis with immunomodulatory cytosine-phosphate-guanidine (CpG) oligodeoxynucleotide (ODN), a toll-like receptor 9 (TLR9) agonist, confers protection against Yersinia pestis, the etiologic agent of plague. The data establish that intranasal administration of CpG ODN 1 day prior to lethal pulmonary exposure to Y.
View Article and Find Full Text PDFThe Gram-negative bacterium Yersinia pestis causes plague, a rapidly progressing and often fatal disease. The formation of fibrin at sites of Y. pestis infection supports innate host defense against plague, perhaps by providing a nondiffusible spatial cue that promotes the accumulation of inflammatory cells expressing fibrin-binding integrins.
View Article and Find Full Text PDFAnimals lacking the inducible nitric oxide synthase gene (nos2(-/-)) are less susceptible to Mycobacterium avium strain 25291 and lack nitric oxide-mediated immunomodulation of CD4(+) T cells. Here we show that the absence of nos2 results in increased accumulation of neutrophils and both CD4(+) and CD8(+) T cells within the M. avium containing granuloma.
View Article and Find Full Text PDFCD4 T cells, and especially T follicular helper cells, are critical for the generation of a robust humoral response to an infection or vaccination. Importantly, immunosenescence affects CD4 T-cell function, and the accumulation of intrinsic defects decreases the cognate helper functions of these cells. However, much less is known about the contribution of the aged microenvironment to this impaired CD4 T-cell response.
View Article and Find Full Text PDFMouse invariant natural killer T cells (iNKT cells) provide cognate and noncognate help for lipid and protein-specific B cells, respectively. However, the long-term outcome for B cells after cognate help is provided by iNKT cells is unknown at present. Here we found that cognate iNKT cell help resulted in a B cell differentiation program characterized by extrafollicular plasmablasts, germinal-center formation, affinity maturation and a robust primary immunoglobulin G (IgG) antibody response that was uniquely dependent on iNKT cell-derived interleukin 21 (IL-21).
View Article and Find Full Text PDFIL-23 is required for the IL-17 response to infection with Mycobacterium tuberculosis, but is not required for the early control of bacterial growth. However, mice deficient for the p19 component of IL-23 (Il23a(-/-)) exhibit increased bacterial growth late in infection that is temporally associated with smaller B cell follicles in the lungs. Cxcl13 is required for B cell follicle formation and immunity during tuberculosis.
View Article and Find Full Text PDFSurvival of mature B cells is regulated by B cell receptor and BAFFR-dependent signals. We show that B cells from mice lacking the G(alphaq) subunit of trimeric G proteins (Gnaq(-/-) mice) have an intrinsic survival advantage over normal B cells, even in the absence of BAFF. Gnaq(-/-) B cells develop normally in the bone marrow but inappropriately survive peripheral tolerance checkpoints, leading to the accumulation of transitional, marginal zone, and follicular B cells, many of which are autoreactive.
View Article and Find Full Text PDFIn vitro generated OVA-specific IL-17-producing CD8 T effector cells (Tc17) from OT-1 mice, adoptively transferred into B16-OVA tumor-bearing mice, controlled tumor growth in early and late stage melanoma. IL-17, TNF, and IFN-gamma from the Tc17 effectors all played a role in an enhanced recruitment of T cells, neutrophils, and macrophages to the tumor. In addition, Tc17 cells and recently recruited, activated neutrophils produced further chemokines, including CCL3, CCL4, CCL5, CXCL9, and CXCL10, responsible for the attraction of type 1 lymphocytes (Th1 and Tc1) and additional neutrophils.
View Article and Find Full Text PDFWe examined the expression and influence of IL-10 during influenza infection. We found that IL-10 does not impact sublethal infection, heterosubtypic immunity, or the maintenance of long-lived influenza Ag depots. However, IL-10-deficient mice display dramatically increased survival compared with wild-type mice when challenged with lethal doses of virus, correlating with increased expression of several Th17-associated cytokines in the lungs of IL-10-deficient mice during the peak of infection, but not with unchecked inflammation or with increased cellular responses.
View Article and Find Full Text PDFCD38 controls the chemotaxis of leukocytes to some, but not all, chemokines, suggesting that chemokine receptor signaling in leukocytes is more diverse than previously appreciated. To determine the basis for this signaling heterogeneity, we examined the chemokine receptors that signal in a CD38-dependent manner and identified a novel "alternative" chemokine receptor signaling pathway. Similar to the "classical" signaling pathway, the alternative chemokine receptor pathway is activated by Galpha(i2)-containing Gi proteins.
View Article and Find Full Text PDFSecondary lymphoid organs (SLOs) promote primary immune responses by recruiting naive lymphocytes and activated APCs. However, their role in the persistence or responsiveness of memory lymphocytes is unclear. We tested whether memory cells were maintained and could respond to challenge in the absence of SLOs.
View Article and Find Full Text PDFThe murine nasal-associated lymphoid tissue (NALT) and cervical lymph nodes (CLN) are involved in the generation of local immune responses within the upper respiratory tract (URT). However, their involvement in these responses does not imply the necessity for resistance to URT infections. We surgically removed NALT or CLN to address the necessity of these lymphatic tissues for the development of a local protective immune response after a URT influenza infection.
View Article and Find Full Text PDFRecent studies have identified distinct populations of memory T cells that persist in the lungs following respiratory virus infections, and contribute to the control of secondary virus infections. Here we discuss the establishment, maintenance and recall of memory T cells in the lung.
View Article and Find Full Text PDFPeyer's patch and nasal-associated lymphoid tissue (NALT) are mucosal lymphoid tissues that appear similar in structure and function. Surprisingly, we found that NALT, unlike Peyer's patch, was formed independently of lymphotoxin (LT)alpha. Furthermore, using mice deficient in the retinoic acid receptor-related orphan receptor-gamma, we found that NALT was formed in the absence of CD4+CD3- cells, which are thought to be the embryonic source of LTalpha.
View Article and Find Full Text PDF