Introduction: Inflammatory conditions in patients have various causes and require different treatments. Bacterial infections are treated with antibiotics, while these medications are ineffective against viral infections. Autoimmune diseases and graft-versus-host disease (GVHD) after allogeneic stem cell transplantation, require immunosuppressive therapies such as glucocorticoids, which may be contraindicated in other inflammatory states.
View Article and Find Full Text PDFBackground: The International Prognostic Index (IPI) is applied to predict the outcome of chronic lymphocytic leukemia (CLL) with five prognostic factors, including genetic analysis. We investigated whether multiparameter flow cytometry (MPFC) data of CLL samples could predict the outcome by methods of explainable artificial intelligence (XAI). Further, XAI should explain the results based on distinctive cell populations in MPFC dot plots.
View Article and Find Full Text PDF"Big omics data" provoke the challenge of extracting meaningful information with clinical benefit. Here, we propose a two-step approach, an initial unsupervised inspection of the structure of the high dimensional data followed by supervised analysis of gene expression levels, to reconstruct the surface patterns on different subtypes of acute myeloid leukemia (AML). First, Bayesian methodology was used, focusing on surface molecules encoded by cluster of differentiation (CD) genes to assess whether AML is a homogeneous group or segregates into clusters.
View Article and Find Full Text PDFMinimal residual disease (MRD) detection is a strong predictor for survival and relapse in acute myeloid leukemia (AML). MRD can be either determined by molecular assessment strategies or via multiparameter flow cytometry. The degree of bone marrow (BM) dilution with peripheral blood (PB) increases with aspiration volume causing consecutive underestimation of the residual AML blast amount.
View Article and Find Full Text PDFThree different Flow Cytometry datasets consisting of diagnostic samples of either peripheral blood (pB) or bone marrow (BM) from patients without any sign of bone marrow disease at two different health care centers are provided. In Flow Cytometry, each cell rapidly passes through a laser beam one by one, and two light scatter, and eight surface parameters of more than 100.000 cells are measured per sample of each patient.
View Article and Find Full Text PDFBenchmark datasets with predefined cluster structures and high-dimensional biomedical datasets outline the challenges of cluster analysis: clustering algorithms are limited in their clustering ability in the presence of clusters defining distance-based structures resulting in a biased clustering solution. Data sets might not have cluster structures. Clustering yields arbitrary labels and often depends on the trial, leading to varying results.
View Article and Find Full Text PDFProjections are conventional methods of dimensionality reduction for information visualization used to transform high-dimensional data into low dimensional space. If the projection method restricts the output space to two dimensions, the result is a scatter plot. The goal of this scatter plot is to visualize the relative relationships between high-dimensional data points that build up distance and density-based structures.
View Article and Find Full Text PDFOne aim of data mining is the identification of interesting structures in data. For better analytical results, the basic properties of an empirical distribution, such as skewness and eventual clipping, i.e.
View Article and Find Full Text PDFBackground: The Matutes score (MS) was proposed to differentiate chronic lymphocytic leukemia (CLL) from other B-cell non-Hodgkin lymphomas (B-NHLs). However, ambiguous immunophenotypes are common and remain a diagnostic challenge. Therefore, we evaluated the diagnostic benefit of measuring CD200 and CD43 expression together with the standard MS antigens.
View Article and Find Full Text PDFThe Fundamental Clustering Problems Suite (FCPS) offers a variety of clustering challenges that any algorithm should be able to handle given real-world data. The FCPS consists of datasets with known a priori classifications that are to be reproduced by the algorithm. The datasets are intentionally created to be visualized in two or three dimensions under the hypothesis that objects can be grouped unambiguously by the human eye.
View Article and Find Full Text PDFHeat pain and its modulation by capsaicin varies among subjects in experimental and clinical settings. A plausible cause is a genetic component, of which TRPV1 ion channels, by their response to both heat and capsaicin, are primary candidates. However, TRPA1 channels can heterodimerize with TRPV1 channels and carry genetic variants reported to modulate heat pain sensitivity.
View Article and Find Full Text PDFLipid metabolism has been suggested to be a major pathophysiological mechanism of multiple sclerosis (MS). With the increasing knowledge about lipid signaling, acquired data become increasingly complex making bioinformatics necessary in lipid research. We used unsupervised machine-learning to analyze lipid marker serum concentrations, pursuing the hypothesis that for the most relevant markers the emerging data structures will coincide with the diagnosis of MS.
View Article and Find Full Text PDFHigh-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary.
View Article and Find Full Text PDFBiomedical data obtained during cell experiments, laboratory animal research, or human studies often display a complex distribution. Statistical identification of subgroups in research data poses an analytical challenge. Here were introduce an interactive R-based bioinformatics tool, called "AdaptGauss".
View Article and Find Full Text PDFThe exact function of color vision for natural-scene perception has remained puzzling. In rapid serial visual presentation (RSVP) tasks, categorically defined targets (e.g.
View Article and Find Full Text PDFWhether overt attention in natural scenes is guided by object content or by low-level stimulus features has become a matter of intense debate. Experimental evidence seemed to indicate that once object locations in a scene are known, salience models provide little extra explanatory power. This approach has recently been criticized for using inadequate models of early salience; and indeed, state-of-the-art salience models outperform trivial object-based models that assume a uniform distribution of fixations on objects.
View Article and Find Full Text PDF