The radical character of molecules exhibiting singlet fission is related to the energy level matching relationships that facilitate this process. Using a linear H model molecule, we employ quantum chemical topology descriptors based on full configuration interaction calculations to rationalize singlet fission. In this context, the influence of the closed-shell to diradical and diradical to tetraradical character on the singlet fission energy matching conditions is analyzed.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
We investigate the dynamical interplay between the different triplet-pair spin states that are formed in the intramolecular singlet fission process in a series of pentacene-based dimers covalently bonded to a phenylene linker in ortho, meta, and para positions. Using first-principles calculations and a density matrix quantum dynamical approach we show that the spin dipole-dipole interaction leads to significant population of the quintet spin manifold in these regioisomers when the singlet, triplet and quintet triplet-pair states are quasidegenerate. Furthermore, we also show that the relative arrangement of the pentacene-like moieties has a profound impact on the dynamics of the spin-mixing process, affecting both the relative population of the different spin-states involved in the dynamics and the time scale of the process.
View Article and Find Full Text PDFElectronic friction and Langevin dynamics is a popular mixed quantum-classical method for simulating the nonadiabatic dynamics of molecules interacting with metal surfaces, as it can be computationally more efficient than fully quantum approaches. In this work, we extend the theory of electronic friction within the hierarchical equations of motion formalism to models with a position-dependent metal-molecule coupling. We show that the addition of a position-dependent metal-molecule coupling adds new contributions to the electronic friction and other forces, which are highly relevant for many physical processes.
View Article and Find Full Text PDFThis study investigates the decomposition of bath correlation functions (BCFs) in terms of complex exponential functions, with an eye on the realistic modeling of open quantum systems based on the hierarchical equations of motion. We introduce the theoretical background of various decomposition schemes in both time and frequency domains and assess their efficiency and accuracy by demonstrating the decomposition of various BCFs. We further develop a new procedure for the decomposition of BCFs originating from highly structured spectral densities with a high accuracy and compare it with existing fitting techniques.
View Article and Find Full Text PDFA novel mixed quantum-classical approach to simulating nonadiabatic dynamics of molecules at metal surfaces is presented. The method combines the numerically exact hierarchical equations of motion approach for the quantum electronic degrees of freedom with Langevin dynamics for the classical degrees of freedom, namely, low-frequency vibrational modes within the molecule. The approach extends previous mixed quantum-classical methods based on Langevin equations to models containing strong electron-electron or quantum electronic-vibrational interactions, while maintaining a nonperturbative and non-Markovian treatment of the molecule-metal coupling.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2023
Potential differences for protein-assisted electron transfer across lipid bilayers or in bio-nano setups can amount to several 100 mV; they lie far outside the range of linear response theory. We describe these situations by Pauli-master equations that are based on Marcus theory of charge transfer between self-trapped electrons and that obey Kirchhoff's current law. In addition, we take on-site blockade effects and a full non-linear response of the local potentials into account.
View Article and Find Full Text PDFThe stability of molecular junctions under transport is of the utmost importance for the field of molecular electronics. This question is often addressed within the paradigm of current-induced heating of nuclear degrees of freedom or current-induced forces acting upon the nuclei. At the same time, an essential characteristic of the failure of a molecular electronic device is its changing conductance - typically from a finite value for the intact device to zero for a device that lost its functionality.
View Article and Find Full Text PDFElectron-vibration coupling is of critical importance for the development of molecular electronics, spintronics, and quantum technologies, as it affects transport properties and spin dynamics. The control over charge-state transitions and subsequent molecular vibrations using scanning tunneling microscopy typically requires the use of a decoupling layer. Here we show the vibronic excitations of tetrabromotetraazapyrene (TBTAP) molecules directly adsorbed on Ag(111) into an orientational glassy phase.
View Article and Find Full Text PDFCurrent-induced bond rupture is a fundamental process in nanoelectronic architectures, such as molecular junctions, and scanning tunneling microscopy measurements of molecules at surfaces. The understanding of the underlying mechanisms is important for the design of molecular junctions that are stable at higher bias voltages and is a prerequisite for further developments in the field of current-induced chemistry. In this work, we analyze the mechanisms of current-induced bond rupture employing a recently developed method, which combines the hierarchical equations of motion approach in twin space with the matrix product state formalism and allows accurate, fully quantum mechanical simulations of the complex bond rupture dynamics.
View Article and Find Full Text PDFElectron transfer is a fundamental process in chemistry, biology, and physics. One of the most intriguing questions concerns the realization of the transitions between nonadiabatic and adiabatic regimes of electron transfer. Using colloidal quantum dot molecules, we computationally demonstrate how the hybridization energy (electronic coupling) can be tuned by changing the neck dimensions and/or the quantum dot sizes.
View Article and Find Full Text PDFThe study of chemical reactions in environments under nonequilibrium conditions has been of interest recently in a variety of contexts, including current-induced reactions in molecular junctions and scanning tunneling microscopy experiments. In this work, we outline a fully quantum mechanical, numerically exact approach to describe chemical reaction rates in such nonequilibrium situations. The approach is based on an extension of the flux correlation function formalism to nonequilibrium conditions and uses a mixed real and imaginary time hierarchical equations of motion approach for the calculation of rate constants.
View Article and Find Full Text PDFWe placed two pentacene chromophores at the termini of a diacetylene linker to investigate the impact of excitation wavelength, conformational flexibility, and vibronic coupling on singlet fission. Photoexcitation of the low-energy absorption results in a superposed mixture of states, which transform on an ultrafast time-scale into a spin-correlated and vibronically coupled/hot delocalized triplet pair (TT). Regardless of temperature, the lifetime for (TT) is less than 2 ps.
View Article and Find Full Text PDFWe extend the twin-space formulation of the hierarchical equations of motion approach in combination with the matrix product state representation [R. Borrelli, J. Chem.
View Article and Find Full Text PDFA critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects-in electron transmission, electron transport, and chemical reactions-is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.
View Article and Find Full Text PDFUnderstanding current-induced bond rupture in single-molecule junctions is both of fundamental interest and a prerequisite for the design of molecular junctions, which are stable at higher-bias voltages. In this work, we use a fully quantum mechanical method based on the hierarchical quantum master equation approach to analyze the dissociation mechanisms in molecular junctions. Considering a wide range of transport regimes, from off-resonant to resonant, non-adiabatic to adiabatic transport, and weak to strong vibronic coupling, our systematic study identifies three dissociation mechanisms.
View Article and Find Full Text PDFWe analyze the dynamics of intramolecular singlet fission in a series of pentacene-based dimers consisting of two pentacene-like chromophores covalently bonded to a phenylene linker in ortho, meta, and para positions. The study uses a quantum dynamical approach that employs a model vibronic Hamiltonian whose parameters are obtained using multireference perturbation theory methods. The results highlight the different role of the direct and mediated mechanism in these systems, showing that the population of the multiexcitonic state, corresponding to the first step of the intramolecular singlet fission process, occurs mainly through a superexchange-like mechanism involving doubly excited or charge transfer states that participate in the process in a virtual way.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2018
We investigate the dynamics of intramolecular singlet fission in a dimer consisting of two pentacene-based chromophores covalently bonded to a phenylene spacer using an approach that combines high-level ab initio multireference perturbation theory methods and quantum dynamical simulations. The results show that the population of the multiexcitonic state, corresponding to the first step of singlet fission, is facilitated by the existence of higher-lying doubly excited and charge transfer states that participate in a superexchange-like way. The important role played by high-frequency ring-breathing molecular vibrations in the process is also discussed.
View Article and Find Full Text PDFWe relate the memory kernel in the Nakajima-Zwanzig-Mori time-convolution approach to the system propagator which is often used to obtain the kernel in the Tokuyama-Mori time-convolutionless approach. The connection provides a robust and simple formalism to compute the memory kernel for a generalized system-bath model circumventing the need to compute high order system-bath observables, thus streamlining the use of numerically exact solvers for calculating the memory kernel. We illustrate this for a model system with electron-electron and electron-phonon couplings, driven away from equilibrium.
View Article and Find Full Text PDFResonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport.
View Article and Find Full Text PDFWe extend the broadened classical master equation (bCME) approach [W. Dou and J. E.
View Article and Find Full Text PDFMolecular junctions, where single molecules are bound to metal or semiconductor electrodes, represent a unique architecture to investigate molecules in a distinct nonequilibrium situation and, in a broader context, to study basic mechanisms of charge and energy transport in a many-body quantum system at the nanoscale. Experimental studies of molecular junctions have revealed a wealth of interesting transport phenomena, the understanding of which necessitates theoretical modeling. The accurate theoretical description of quantum transport in molecular junctions is challenging because it requires methods that are capable to describe the electronic structure and dynamics of molecules in a condensed phase environment out of equilibrium, in some cases with strong electron-electron and/or electronic-vibrational interaction.
View Article and Find Full Text PDFWhen molecular dimers, crystalline films or molecular aggregates absorb a photon to produce a singlet exciton, spin-allowed singlet fission may produce two triplet excitons that can be used to generate two electron-hole pairs, leading to a predicted ∼50% enhancement in maximum solar cell performance. The singlet fission mechanism is still not well understood. Here we report on the use of time-resolved optical and electron paramagnetic resonance spectroscopy to probe singlet fission in a pentacene dimer linked by a non-conjugated spacer.
View Article and Find Full Text PDF