Publications by authors named "Michael Tanksalvala"

Imaging using coherent extreme-ultraviolet (EUV) light provides exceptional capabilities for the characterization of the composition and geometry of nanostructures by probing with high spatial resolution and elemental specificity. We present a multi-modal tabletop EUV imaging reflectometer for high-fidelity metrology of nanostructures. The reflectometer is capable of measurements in three distinct modes: intensity reflectometry, scatterometry, and imaging reflectometry, where each mode addresses different nanostructure characterization challenges.

View Article and Find Full Text PDF

We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources.

View Article and Find Full Text PDF

Recent advances in structured illumination are enabling a wide range of applications from imaging to metrology, which can benefit from advanced beam characterization techniques. Solving uniquely for the spatial distribution of polarization in a beam typically involves the use of two or more polarization optics, such as a polarizer and a waveplate, which is prohibitive for some wavelengths outside of the visible spectrum. We demonstrate a technique that circumvents the use of a waveplate by exploiting extended Gerchberg-Saxton phase retrieval to extract the phase.

View Article and Find Full Text PDF

Defect inspection on lithographic substrates, masks, reticles, and wafers is an important quality assurance process in semiconductor manufacturing. Coherent Fourier scatterometry (CFS) using laser beams with a Gaussian spatial profile is the standard workhorse routinely used as an in-line inspection tool to achieve high throughput. As the semiconductor industry advances toward shrinking critical dimensions in high volume manufacturing using extreme ultraviolet lithography, new techniques that enable high-sensitivity, high-throughput, and in-line inspection are critically needed.

View Article and Find Full Text PDF

Next-generation nano- and quantum devices have increasingly complex 3D structure. As the dimensions of these devices shrink to the nanoscale, their performance is often governed by interface quality or precise chemical or dopant composition. Here, we present the first phase-sensitive extreme ultraviolet imaging reflectometer.

View Article and Find Full Text PDF

Imaging charge, spin, and energy flow in materials is a current grand challenge that is relevant to a host of nanoenhanced systems, including thermoelectric, photovoltaic, electronic, and spin devices. Ultrafast coherent x-ray sources enable functional imaging on nanometer length and femtosecond timescales particularly when combined with advances in coherent imaging techniques. Here, we combine ptychographic coherent diffractive imaging with an extreme ultraviolet high harmonic light source to directly visualize the complex thermal and acoustic response of an individual nanoscale antenna after impulsive heating by a femtosecond laser.

View Article and Find Full Text PDF

Colloidal crystals with specific electronic, optical, magnetic, vibrational properties, can be rationally designed by controlling fundamental parameters such as chemical composition, scale, periodicity and lattice symmetry. In particular, silica nanospheres -which assemble to form colloidal crystals- are ideal for this purpose, because of the ability to infiltrate their templates with semiconductors or metals. However characterization of these crystals is often limited to techniques such as grazing incidence small-angle scattering that provide only global structural information and also often require synchrotron sources.

View Article and Find Full Text PDF

The ability to record large field-of-view images without a loss in spatial resolution is of crucial importance for imaging science. For most imaging techniques however, an increase in field-of-view comes at the cost of decreased resolution. Here we present a novel extension to ptychographic coherent diffractive imaging that permits simultaneous full-field imaging of multiple locations by illuminating the sample with spatially separated, interfering probes.

View Article and Find Full Text PDF

We demonstrate quantitative, chemically specific imaging of buried nanostructures, including oxidation and diffusion reactions at buried interfaces, using nondestructive tabletop extreme ultraviolet (EUV) coherent diffractive imaging (CDI). Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither visible microscopy nor atomic force microscopy can image the buried interface. Short wavelength high harmonic beams can penetrate the aluminum layer, yielding high-contrast images of the buried structures.

View Article and Find Full Text PDF

We introduce a novel coherent diffraction imaging technique based on ptychography that enables simultaneous full-field imaging of multiple, spatially separate, sample locations. This technique only requires that diffracted light from spatially separated sample sites be mutually incoherent at the detector, which can be achieved using multiple probes that are separated either by wavelength or by orthogonal polarization states. This approach enables spatially resolved polarization spectroscopy from a single ptychography scan, as well as allowing a larger field of view to be imaged without loss in spatial resolution.

View Article and Find Full Text PDF