Researchers have historically focused on understanding therapist multicultural competency and orientation through client self-report measures and behavioral coding. While client perceptions of therapist cultural competency and multicultural orientation and behavioral coding are important, reliance on these methods limits therapists receiving systematic, scalable feedback on cultural opportunities within sessions. Prior research demonstrating the feasibility of automatically identifying topics of conversation in psychotherapy suggests that natural language processing (NLP) models could be trained to automatically identify when clients and therapists are talking about cultural concerns and could inform training and provision of rapid feedback to therapists.
View Article and Find Full Text PDFNatural language processing (NLP) is a subfield of machine learning that may facilitate the evaluation of therapist-client interactions and provide feedback to therapists on client outcomes on a large scale. However, there have been limited studies applying NLP models to client outcome prediction that have (a) used transcripts of therapist-client interactions as direct predictors of client symptom improvement, (b) accounted for contextual linguistic complexities, and (c) used best practices in classical training and test splits in model development. Using 2,630 session recordings from 795 clients and 56 therapists, we developed NLP models that directly predicted client symptoms of a given session based on session recordings of the previous session (Spearman's rho =0.
View Article and Find Full Text PDFRecent scholarship has highlighted the value of therapists adopting a multicultural orientation (MCO) within psychotherapy. A newly developed performance-based measure of MCO capacities exists (MCO-performance task [MCO-PT]) in which therapists respond to video-based vignettes of clients sharing culturally relevant information in therapy. The MCO-PT provides scores related to the three aspects of MCO: cultural humility (i.
View Article and Find Full Text PDFImportance: Use of asynchronous text-based counseling is rapidly growing as an easy-to-access approach to behavioral health care. Similar to in-person treatment, it is challenging to reliably assess as measures of process and content do not scale.
Objective: To use machine learning to evaluate clinical content and client-reported outcomes in a large sample of text-based counseling episodes of care.
Background: The opioid epidemic has resulted in expanded substance use treatment services and strained the clinical workforce serving people with opioid use disorder. Focusing on evidence-based counseling practices like motivational interviewing may be of interest to counselors and their supervisors, but time-intensive adherence tasks like recording and feedback are aspirational in busy community-based opioid treatment programs. The need to improve and systematize clinical training and supervision might be addressed by the growing field of machine learning and natural language-based technology, which can promote counseling skill via self- and supervisor-monitoring of counseling session recordings.
View Article and Find Full Text PDFSupportive counseling skills like empathy and active listening are critical ingredients of all psychotherapies, but most research relies on client or therapist reports of the treatment process. This study utilized machine-learning models trained to evaluate counseling skills to evaluate supportive skill use in 3,917 session recordings. We analyzed overall skill use and variation in practice patterns using a series of mixed effects models.
View Article and Find Full Text PDFBackground: Each year, millions of Americans receive evidence-based psychotherapies (EBPs) like cognitive behavioral therapy (CBT) for the treatment of mental and behavioral health problems. Yet, at present, there is no scalable method for evaluating the quality of psychotherapy services, leaving EBP quality and effectiveness largely unmeasured and unknown. Project AFFECT will develop and evaluate an AI-based software system to automatically estimate CBT fidelity from a recording of a CBT session.
View Article and Find Full Text PDFWith the growing prevalence of psychological interventions, it is vital to have measures which rate the effectiveness of psychological care to assist in training, supervision, and quality assurance of services. Traditionally, quality assessment is addressed by human raters who evaluate recorded sessions along specific dimensions, often codified through constructs relevant to the approach and domain. This is, however, a cost-prohibitive and time-consuming method that leads to poor feasibility and limited use in real-world settings.
View Article and Find Full Text PDFEmotional distress is a common reason for seeking psychotherapy, and sharing emotional material is central to the process of psychotherapy. However, systematic research examining patterns of emotional exchange that occur during psychotherapy sessions is often limited in scale. Traditional methods for identifying emotion in psychotherapy rely on labor-intensive observer ratings, client or therapist ratings obtained before or after sessions, or involve manually extracting ratings of emotion from session transcripts using dictionaries of positive and negative words that do not take the context of a sentence into account.
View Article and Find Full Text PDFObjective: Train machine learning models that automatically predict emotional valence of patient and physician in primary care visits.
Methods: Using transcripts from 353 primary care office visits with 350 patients and 84 physicians (Cook, 2002 [1], Tai-Seale et al., 2015 [2]), we developed two machine learning models (a recurrent neural network with a hierarchical structure and a logistic regression classifier) to recognize the emotional valence (positive, negative, neutral) (Posner et al.
Artificial intelligence generally and machine learning specifically have become deeply woven into the lives and technologies of modern life. Machine learning is dramatically changing scientific research and industry and may also hold promise for addressing limitations encountered in mental health care and psychotherapy. The current paper introduces machine learning and natural language processing as related methodologies that may prove valuable for automating the assessment of meaningful aspects of treatment.
View Article and Find Full Text PDFTherapist interpersonal skills are foundational to psychotherapy. However, assessment is labor intensive and infrequent. This study evaluated if machine learning (ML) tools can automatically assess therapist interpersonal skills.
View Article and Find Full Text PDFObjective: Amid electronic health records, laboratory tests, and other technology, office-based patient and provider communication is still the heart of primary medical care. Patients typically present multiple complaints, requiring physicians to decide how to balance competing demands. How this time is allocated has implications for patient satisfaction, payments, and quality of care.
View Article and Find Full Text PDFBackground: Training therapists is both expensive and time-consuming. Degree-based training can require tens of thousands of dollars and hundreds of hours of expert instruction. Counseling skills practice often involves role-plays, standardized patients, or practice with real clients.
View Article and Find Full Text PDFDirect observation of psychotherapy and providing performance-based feedback is the gold-standard approach for training psychotherapists. At present, this requires experts and training human coding teams, which is slow, expensive, and labor intensive. Machine learning and speech signal processing technologies provide a way to scale up feedback in psychotherapy.
View Article and Find Full Text PDFBackground: Smartphones provide a low-cost and efficient means to collect population level data. Several small studies have shown promise in predicting mood variability from smartphone-based sensor and usage data, but have not been generalized to nationally recruited samples. This study used passive smartphone data, demographic characteristics, and baseline depressive symptoms to predict prospective daily mood.
View Article and Find Full Text PDFObjective: Acute pain control after cranial surgery is challenging. Prior research has shown that patients experience inadequate pain control post-craniotomy. The use of oral medications is sometimes delayed because of postoperative nausea, and the use of narcotics can impair the evaluation of brain function and thus are used judiciously.
View Article and Find Full Text PDFPsychotherapy is on the verge of a technology-inspired revolution. The concurrent maturation of communication, signal processing, and machine learning technologies begs an earnest look at how these technologies may be used to improve the quality of psychotherapy. Here, we discuss 3 research domains where technology is likely to have a significant impact: (1) mechanism and process, (2) training and feedback, and (3) technology-mediated treatment modalities.
View Article and Find Full Text PDFMotivational interviewing (MI) is an efficacious treatment for substance use disorders and other problem behaviors. Studies on MI fidelity and mechanisms of change typically use human raters to code therapy sessions, which requires considerable time, training, and financial costs. Natural language processing techniques have recently been utilized for coding MI sessions using machine learning techniques, rather than human coders, and preliminary results have suggested these methods hold promise.
View Article and Find Full Text PDFPurpose: We hypothesized that virtual family meetings in the intensive care unit with conference calling or Skype videoconferencing would result in increased family member satisfaction and more efficient decision making.
Methods: This is a prospective, nonblinded, nonrandomized pilot study. A 6-question survey was completed by family members after family meetings, some of which used conference calling or Skype by choice.