This study tested the effects of skin and core cooling on cognitive function in 0°C cold air. Ten males completed a randomized, repeated measures study consisting of four environmental conditions: (i) 30 min of exposure to 22°C thermoneutral air (TN), (ii) 15 min to 0°C cold air which cooled skin temperature to ~27°C (CS), (iii) 0°C cold air exposure causing mild core cooling of ∆-0.3°C from baseline (C-0.
View Article and Find Full Text PDFWe tested the effects of cold air (0°C) exposure on endurance capacity to different levels of cold strain ranging from skin cooling to core cooling of Δ-1.0°C. Ten males completed a randomized, crossover, control study consisting of a cycling time to exhaustion (TTE) at 70% of their peak power output following: ) 30-min of exposure to 22°C thermoneutral air (TN), ) 30-min exposure to 0°C air leading to a cold shell (CS), ) 0°C air exposure causing mild hypothermia of -0.
View Article and Find Full Text PDFIncreases in body temperature from heat stress (i.e., hyperthermia) generally impairs cognitive function across a range of domains and complexities, but the relative contribution from skin versus core temperature changes remains unclear.
View Article and Find Full Text PDFPurpose: We tested the effectiveness of a 2-wk motivational self-talk (MST) intervention-specific to heat tolerance-on endurance capacity and cognitive function in the heat.
Methods: Eighteen trained male (n = 14) and female (n = 4) cyclists randomly received 2 wk of MST training (n = 9) or a control regimen (CON, n = 9). The experimental protocol was a PRE/POST design consisting of 30 min of cycling at 60% peak power output (PPO) in the heat (35°C, 50% relative humidity, ~3.
Survivor of a ship ground in polar regions may have to wait more than five days before being rescued. Therefore, the purpose of this study was to explore cognitive performance during prolonged cold exposure. Core temperature (T c) and cognitive test battery (CTB) performance data were collected from eight participants during 24 hours of cold exposure (7.
View Article and Find Full Text PDFBecause the majority of cold exposure studies are constrained to short-term durations of several hours, the long-term metabolic demands of cold exposure, such as during survival situations, remain largely unknown. The present study provides the first estimates of thermogenic rate, oxidative fuel selection, and muscle recruitment during a 24-h cold-survival simulation. Using combined indirect calorimetry and electrophysiological and isotopic methods, changes in muscle glycogen, total carbohydrate, lipid, protein oxidation, muscle recruitment, and whole body thermogenic rate were determined in underfed and noncold-acclimatized men during a simulated accidental exposure to 7.
View Article and Find Full Text PDFAerosp Med Hum Perform
February 2015
Introduction: Given the effects of cold water immersion on breath-hold (BH) capabilities, a practical training exercise was developed for military/paramilitary personnel completing a helicopter underwater egress training (HUET) program. The exercise was designed to provide firsth and experience of the effects of cold water exposure on BH time.
Methods: After completing the required HUET, 47 subjects completed two BH testing sessions as well as a short questionnaire.
Although essential in an emergency such as a helicopter ditching, mandatory survival suits worn by civilian personnel may lead to heat strain during a normal flight. To explore the possibility that wearing a helicopter transportation suit impairs emergency performance, 11 individuals completed underwater escape procedures immediately following a pre-recorded emergency announcement (randomly played between 50 and 90 min) in two ambient temperature conditions (Thermoneutral = 21 °C and Hot = 34 °C). Mean skin and rectal temperatures were recorded throughout the trials, while situation awareness and thermal sensation/comfort were recorded on completion of trials.
View Article and Find Full Text PDFAviat Space Environ Med
October 2008
Background: When a helicopter crashes or ditches into water the crew and passengers must often make an escape from underwater and a number of the occupants do not survive. This paper examined fatality rates, human factors problems with escape, and causes of death in Canadian civilian registered helicopter accidents in water (1979-2006).
Method: Data obtained from the Transportation Safety Board of Canada was reviewed.