Publications by authors named "Michael T. Heneka"

The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated.

View Article and Find Full Text PDF

Background: Quantification of Amyloid beta (Aβ) oligomers in plasma enables early diagnosis of Alzheimer's Disease (AD) and improves our understanding of underlying pathologies. However, quantification necessitates an extremely sensitive and selective technology because of very low Aβ oligomer concentrations and possible interference from matrix components.

Methods: In this report, we developed and validated a surface-based fluorescence distribution analysis (sFIDA) assay for quantification of Aβ oligomers in plasma.

View Article and Find Full Text PDF
Article Synopsis
  • Research highlights the significant role of immune processes in the development of Alzheimer's disease, which is the leading cause of dementia.
  • Various studies indicate that both innate and adaptive immune responses contribute to the disease's pathology and are influenced by genetics and lifestyle factors.
  • New therapeutic approaches targeting neuroinflammation are being explored in clinical settings, offering potential treatment options for Alzheimer's patients.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated the role of various post-translational modifications of amyloid-β (Aβ) in different types of dementia, highlighting how specific Aβ variants could characterize distinct dementia forms, including Alzheimer's disease (AD) and other dementias like Lewy body dementia and vascular dementia.
  • - Researchers analyzed post-mortem brain tissues using immunohistochemical techniques and machine learning to quantify various Aβ modifications, finding that AD tissues had the highest levels of Aβ variants compared to other conditions.
  • - Notably, the isoAsp7-Aβ variant was found abundantly across all dementia types, while other modifications displayed varying distributions in plaque types and cerebral blood vessels, with some variants detected intraneuronally rather
View Article and Find Full Text PDF

Objective: Neuronal cell death and neuroinflammation are characteristic features of epilepsy, but it remains unclear whether neuronal cell death as such is causative for the development of epileptic seizures. To test this hypothesis, we established a novel mouse line permitting inducible ablation of pyramidal neurons by inserting simian diphtheria toxin (DT) receptor (DTR) cDNA into the Ccl17 locus. The chemokine CCL17 is expressed in pyramidal CA1 neurons in adult mice controlling microglial quiescence.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses the introduction of a new type of immunotherapy for Alzheimer's, focusing on the implications of how, when, and who should be treated with it.
  • It reviews key clinical trial results for three treatments: aducanumab, lecanemab, and donanemab, along with recommendations for patient selection and safety monitoring.
  • The authors highlight the shift from syndrome-based care to early, biomarker-guided treatments for Alzheimer's, emphasizing the need for changes in healthcare infrastructure to support this approach while also promising potential benefits in slowing disease progression.
View Article and Find Full Text PDF

The cognitive reserve (CR) hypothesis posits that individuals can differ in how their brain function is disrupted by pathology associated with aging and neurodegeneration. Here, we test this hypothesis in the continuum from cognitively normal to at-risk stages for Alzheimer's Disease (AD) to AD dementia using longitudinal data from 490 participants of the DELCODE multicentric observational study. Brain function is measured using task fMRI of visual memory encoding.

View Article and Find Full Text PDF

Background: Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD.

Methods: We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; mean = 70.

View Article and Find Full Text PDF

Neuroinflammation, characterized by a complex interplay among innate and adaptive immune responses within the central nervous system (CNS), is crucial in responding to infections, injuries, and disease pathologies. However, the dysregulation of the neuroinflammatory response could significantly affect neurons in terms of function and structure, leading to profound health implications. Although tremendous progress has been made in understanding the relationship between neuroinflammatory processes and alterations in neuronal integrity, the specific implications concerning both structure and function have not been extensively covered, with the exception of perspectives on glial activation and neurodegeneration.

View Article and Find Full Text PDF

Introduction: Our understanding of how fine particulate matter (PM) impacts cognitive functioning is limited. Systemic inflammation processes may play a role in mediating this effect.

Methods: This prospective cohort study used data from 66,254 participants aged 18+ between 2006 and 2015 from the Dutch Lifelines Cohort Study and Biobank.

View Article and Find Full Text PDF

During mammalian aging, senescent cells accumulate in the body. Recent evidence suggests that senescent cells potentially contribute to age-related neurodegenerative diseases in the central nervous system (CNS), including tauopathies such as Alzheimer's disease (AD). Senescent cells undergo irreversible cell cycle arrest and release an inflammatory 'senescence-associated secretory profile' (SASP), which can exert devastating effects on surrounding cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the potential of cerebrospinal fluid (CSF) biomarkers, particularly neurogranin and BACE1, to predict cognitive decline in individuals with subjective cognitive decline (SCD) before developing Alzheimer's disease (AD).
  • Researchers analyzed data from 530 participants and found that higher levels of neurogranin and its ratio to BACE1 were linked to faster cognitive decline and increased risk of progressing from SCD to mild cognitive impairment (MCI).
  • The findings suggest that monitoring neurogranin levels could help in identifying those at greater risk for cognitive decline, potentially aiding in earlier diagnosis and intervention for Alzheimer's disease.
View Article and Find Full Text PDF

Tunneling nanotubes (TNTs) have emerged as intriguing structures facilitating intercellular communications across diverse cell types, which are integral to several biological processes, as well as participating in various disease progression. This review provides an in-depth analysis of TNTs, elucidating their structural characteristics and functional roles, with a particular focus on their significance within the brain environment and their implications in neurological and neurodegenerative disorders. We explore the interplay between TNTs and neurological diseases, offering potential mechanistic insights into disease progression, while also highlighting their potential as viable therapeutic targets.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer’s disease (AD) is the most common chronic neurodegenerative disorder, marked by cognitive decline and memory loss primarily due to neurodegeneration.
  • Recent research is focusing on neuroinflammation, particularly the roles of microglia and astrocytes, in the progression of AD and its core pathologies, such as amyloid beta and tau tangles.
  • The article emphasizes the need to explore various cellular contributors to neuroinflammation to inform new treatment strategies for AD.
View Article and Find Full Text PDF

Introduction: The Locus Coeruleus (LC) is linked to the development and pathophysiology of neurodegenerative diseases such as Alzheimer's Disease (AD). Magnetic Resonance Imaging based LC features have shown potential to assess LC integrity in vivo.

Methods: We present a Deep Learning based LC segmentation and feature extraction method: ELSI-Net and apply it to healthy aging and AD dementia datasets.

View Article and Find Full Text PDF
Article Synopsis
  • Recent drugs for Alzheimer's disease have not worked well and can cause serious problems.
  • Scientists are looking at how inflammation in the brain might be linked to Alzheimer's and how it changes over time.
  • New blood tests could help doctors understand Alzheimer's better and match treatments to individual patients based on their specific symptoms.
View Article and Find Full Text PDF
Article Synopsis
  • - Microglia play a vital role in brain health by connecting to neurons through tunneling nanotubes (TNTs), allowing the quick exchange of essential materials.
  • - In neurodegenerative diseases, microglia utilize these TNTs to help neurons eliminate toxic protein aggregates like alpha-synuclein and tau, thereby improving neuronal health and function.
  • - Genetic mutations in microglia, such as Lrrk2(Gly2019Ser) and Trem2 variants, hinder their ability to transfer protective materials to neurons, highlighting their potential involvement in neurodegenerative disease progression.
View Article and Find Full Text PDF

Neuroinflammation is a common hallmark of Alzheimer's disease (AD), with NLRP3 inflammasome proven to be activated in microglia of AD patients' brains. In this study, a newly isolated biflavonoid (7,7'-di-O-methylchamaejasmin/M8) and a crude extract of the plant Khaya grandifoliola (KG) were investigated for their inhibitory effect on inflammasome activation. In preliminary experiments, M8 and KG showed no cytotoxicity on human macrophage-like differentiated THP-1 cells and exhibited anti-inflammatory inhibition of nitric oxide produced following lipopolysaccharide stimulation.

View Article and Find Full Text PDF

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases.

View Article and Find Full Text PDF

Background: The NIA-AA Research Framework on Alzheimer's disease (AD) proposes a transitional stage (stage 2) characterized by subtle cognitive decline, subjective cognitive decline (SCD) and mild neurobehavioral symptoms (NPS).

Objective: To identify participant clusters based on stage 2 features and assess their association with amyloid positivity in cognitively unimpaired individuals.

Methods: We included baseline data of N = 338 cognitively unimpaired participants from the DELCODE cohort with data on cerebrospinal fluid biomarkers for AD.

View Article and Find Full Text PDF

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional MRI activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive ageing. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analysed subsequent memory functional MRI data from individuals with SCD, MCI and AD dementia as well as healthy controls and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-centre DELCODE study (n = 468).

View Article and Find Full Text PDF

Inferior frontal sulcal hyperintensities (IFSHs) on fluid-attenuated inversion recovery (FLAIR) sequences have been proposed to be indicative of glymphatic dysfunction. Replication studies in large and diverse samples are nonetheless needed to confirm them as an imaging biomarker. We investigated whether IFSHs were tied to Alzheimer's disease (AD) pathology and cognitive performance.

View Article and Find Full Text PDF