Single particle reconstruction from cryoelectron microscopy images, though emerging as a powerful means in structural biology, is faced with challenges as applied to asymmetric proteins smaller than megadaltons due to low contrast. Zernike phase plate can improve the contrast by restoring the microscope contrast transfer function. Here, by exploiting simulated Zernike and conventional defocused cryoelectron microscope images with noise characteristics comparable to those of experimental data, we quantified the efficiencies of the steps in single particle analysis of ice-embedded RNA polymerase II (500 kDa), transferrin receptor complex (290 kDa), and T7 RNA polymerase lysozyme (100 kDa).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2009
A simple genetic tag-based labeling method that permits specific attachment of a fluorescence probe near the C terminus of virtually any subunit of a protein complex is implemented. Its immediate application to yeast RNA polymerase II (pol II) enables us to test various hypotheses of RNA exit channel by using fluorescence resonance energy transfer (FRET) analysis. The donor dye is labeled on a site near subunit Rpb3 or Rpb4, and the acceptor dye is attached to the 5' end of RNA transcript in the pol II elongation complex.
View Article and Find Full Text PDF