Publications by authors named "Michael T W McKibben"

Invasive species offer outstanding opportunities to identify the genomic sources of variation that contribute to rapid adaptation, as well as the genetic mechanisms facilitating invasions. The Eurasian plant yellow starthistle (Centaurea solstitialis) is highly invasive in North and South American grasslands and known to have evolved increased growth and reproduction during invasion. Here, we develop new genomic resources for C.

View Article and Find Full Text PDF

Premise: The history of angiosperms is marked by repeated rounds of ancient whole-genome duplications (WGDs). Here we used state-of-the-art methods to provide an up-to-date view of the distribution of WGDs in the history of angiosperms that considers both uncertainty introduced by different WGD inference methods and different underlying species-tree hypotheses.

Methods: We used the distribution synonymous divergences (K) of paralogs and orthologs from transcriptomic and genomic data to infer and place WGDs across two hypothesized angiosperm phylogenies.

View Article and Find Full Text PDF
Article Synopsis
  • Model species like Arabidopsis thaliana are essential for advancing plant science and improving our understanding of the land plant evolutionary tree.
  • The research highlights how Arabidopsis can serve as a bridge to explore genetic resources across the entire Brassicales order, linking traits and evolutionary patterns.
  • The authors advocate for establishing a "model clade" approach and propose creating global networks to enhance collaborative studies on Brassicales-wide traits.
View Article and Find Full Text PDF

Nearly all lineages of land plants have experienced at least one whole-genome duplication (WGD) in their history. The legacy of these ancient WGDs is still observable in the diploidized genomes of extant plants. Genes originating from WGD-paleologs-can be maintained in diploidized genomes for millions of years.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have studied the genome of the model fern Ceratopteris richardii, revealing its complex evolution and adaptations due to a significant genome duplication event 60 million years ago.
  • This evolution includes gene loss, duplications, and horizontal gene transfers from bacteria, highlighting changes in defense-related gene families.
  • The study enhances our understanding of plant biology and the evolution of seed plants by demonstrating how fern genes influenced seed development.
View Article and Find Full Text PDF

Most land plants are now known to be ancient polyploids that have rediploidized. Diploidization involves many changes in genome organization that ultimately restore bivalent chromosome pairing and disomic inheritance, and resolve dosage and other issues caused by genome duplication. In this review, we discuss the nature of polyploidy and its impact on chromosome pairing behavior.

View Article and Find Full Text PDF

Many crops are polyploid or have a polyploid ancestry. Recent phylogenetic analyses have found that polyploidy often preceded the domestication of crop plants. One explanation for this observation is that increased genetic diversity following polyploidy may have been important during the strong artificial selection that occurs during domestication.

View Article and Find Full Text PDF