Publications by authors named "Michael T Ryan"

Purpose: Families living with mitochondrial diseases (MD) often endure prolonged diagnostic journeys and invasive testing, yet many remain without a molecular diagnosis. The Australian Genomics Mitochondrial Flagship, comprising clinicians, diagnostic, and research scientists, conducted a prospective national study to identify the diagnostic utility of singleton genomic sequencing using blood samples.

Methods: A total of 140 children and adults living with suspected MD were recruited using modified Nijmegen criteria (MNC) and randomized to either exome + mitochondrial DNA (mtDNA) sequencing or genome sequencing.

View Article and Find Full Text PDF

Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined.

View Article and Find Full Text PDF

Sarcopenia, the age-related decline in muscle function, places a considerable burden on health-care systems. While the stereotypic hallmarks of sarcopenia are well characterized, their contribution to muscle wasting remains elusive, which is partly due to the limited availability of animal models. Here, we have performed cellular and molecular characterization of skeletal muscle from the African killifish-an extremely short-lived vertebrate-revealing that while many characteristics deteriorate with increasing age, supporting the use of killifish as a model for sarcopenia research, some features surprisingly reverse to an "early-life" state in the extremely old stages.

View Article and Find Full Text PDF

Megakaryocytes (MK) generate platelets. Recently, we and others, have reported MK also regulate hematopoietic stem cells (HSC). Here we show high ploidy large cytoplasmic megakaryocytes (LCM) are critical negative regulators of HSC and critical for platelet formation.

View Article and Find Full Text PDF

Caveolae have been linked to many biological functions, but their precise roles are unclear. Using quantitative whole-cell proteomics of genome-edited cells, we show that the oxidative stress response is the major pathway dysregulated in cells lacking the key caveola structural protein, CAVIN1. CAVIN1 deletion compromised sensitivity to oxidative stress in cultured cells and in animals.

View Article and Find Full Text PDF

The structural and functional organization of the mitochondrial respiratory chain (MRC) remains intensely debated. Here, we show the co-existence of two separate MRC organizations in human cells and postmitotic tissues, C-MRC and S-MRC, defined by the preferential expression of three COX7A subunit isoforms, COX7A1/2 and SCAFI (COX7A2L). COX7A isoforms promote the functional reorganization of distinct co-existing MRC structures to prevent metabolic exhaustion and MRC deficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Primary mitochondrial diseases stem from issues with oxidative phosphorylation, leading to diverse genetic and clinical manifestations.
  • Researchers discovered a link between biallelic pathogenic variants in the COX11 gene and infantile-onset mitochondrial encephalopathies in two families, highlighting its previously unknown role in human disease.
  • Functional studies confirmed that cells with mutated COX11 had lower ATP levels, which could be boosted by coenzyme Q supplementation, indicating a potential treatment avenue for affected patients.
View Article and Find Full Text PDF

The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long-lived complex in vitro, in different cell lines, and in tissues.

View Article and Find Full Text PDF

Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain.

View Article and Find Full Text PDF

SignificanceMitochondria are double-membraned eukaryotic organelles that house the proteins required for generation of ATP, the energy currency of cells. ATP generation within mitochondria is performed by five multisubunit complexes (complexes I to V), the assembly of which is an intricate process. Mutations in subunits of these complexes, or the suite of proteins that help them assemble, lead to a severe multisystem condition called mitochondrial disease.

View Article and Find Full Text PDF

Cytochrome oxidase (COX) assembly factor 7 (COA7) is a metazoan-specific assembly factor, critical for the biogenesis of mitochondrial complex IV (cytochrome oxidase). Although mutations in COA7 have been linked to complex IV assembly defects and neurological conditions such as peripheral neuropathy, ataxia, and leukoencephalopathy, the precise role COA7 plays in the biogenesis of complex IV is not known. Here, we show that loss of COA7 blocks complex IV assembly after the initial step where the COX1 module is built, progression from which requires the incorporation of copper and addition of the COX2 and COX3 modules.

View Article and Find Full Text PDF

Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP).

View Article and Find Full Text PDF

Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion.

View Article and Find Full Text PDF

With age, hematopoietic stem cells (HSC) undergo changes in function, including reduced regenerative potential and loss of quiescence, which is accompanied by a significant expansion of the stem cell pool that can lead to haematological disorders. Elevated metabolic activity has been implicated in driving the HSC ageing phenotype. Here we show that nicotinamide riboside (NR), a form of vitamin B3, restores youthful metabolic capacity by modifying mitochondrial function in multiple ways including reduced expression of nuclear encoded metabolic pathway genes, damping of mitochondrial stress and a decrease in mitochondrial mass and network-size.

View Article and Find Full Text PDF

Mitochondrial disease is a debilitating condition with a diverse genetic etiology. Here, we report that TMEM126A, a protein that is mutated in patients with autosomal-recessive optic atrophy, participates directly in the assembly of mitochondrial complex I. Using a combination of genome editing, interaction studies, and quantitative proteomics, we find that loss of TMEM126A results in an isolated complex I deficiency and that TMEM126A interacts with a number of complex I subunits and assembly factors.

View Article and Find Full Text PDF

In animals, mitochondria are mainly organised into an interconnected tubular network extending across the cell along a cytoskeletal scaffold. Mitochondrial fission and fusion, as well as distribution along cytoskeletal tracks, are counterbalancing mechanisms acting in concert to maintain a mitochondrial network tuned to cellular function. Balanced mitochondrial dynamics permits quality control of the network including biogenesis and turnover, and distribution of mitochondrial DNA, and is linked to metabolic status.

View Article and Find Full Text PDF

The study of the mitochondrial respiratory chain (MRC) function in relation with its structural organization is of great interest due to the central role of this system in eukaryotic cell metabolism. The complexome profiling technique has provided invaluable information for our understanding of the composition and assembly of the individual MRC complexes, and also of their association into larger supercomplexes (SCs) and respirasomes. The formation of the SCs has been highly debated, and their assembly and regulation mechanisms are still unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Many patients with suspected monogenic diseases remain undiagnosed due to challenges in analyzing repetitive regions of the genome, like the ATAD3 locus associated with fatal mitochondrial disorders.
  • Whole exome, genome, and long-read DNA sequencing techniques were utilized on 17 individuals from 16 families, revealing six distinct duplications in the ATAD3 gene linked to severe clinical symptoms, including fatal cardiomyopathy and corneal issues.
  • The identified duplications create abnormal proteins and significantly disrupt mitochondrial function, marking the ATAD3 locus as a leading cause of pediatric mitochondrial diseases, despite frequent detection challenges in standard genomic tests.
View Article and Find Full Text PDF

Mitochondria form dynamic networks in the cell that are balanced by the flux of iterative fusion and fission events of the organelles. It is now appreciated that mitochondrial fission also represents an end-point event in a signalling axis that allows cells to sense and respond to external cues. The fission process is orchestrated by membrane-associated adaptors, influenced by organellar and cytoskeletal interactions and ultimately executed by the dynamin-like GTPase DRP1.

View Article and Find Full Text PDF

Complex IV (cytochrome oxidase; COX) is the terminal complex of the mitochondrial electron transport chain. Copper is essential for COX assembly, activity, and stability, and is incorporated into the dinuclear Cu and mononuclear Cu sites. Multiple assembly factors play roles in the biogenesis of these sites within COX and the failure of this intricate process, such as through mutations to these factors, disrupts COX assembly and activity.

View Article and Find Full Text PDF

The many functions of mitochondria-the powerhouses of our cells-are intimately linked with their ultrastructure and network morphology. In this issue, Stephan et al (2020) apply a tour de force of microscopic techniques to examine the contributions of specific mitochondrial proteins to crista architecture.

View Article and Find Full Text PDF

Virtual memory T (T) cells are antigen-naïve CD8 T cells that exist in a semi-differentiated state and exhibit marked proliferative dysfunction in advanced age. High spare respiratory capacity (SRC) has been proposed as a defining metabolic characteristic of antigen-experienced memory T (T) cells, facilitating rapid functionality and survival. Given the semi-differentiated state of T cells and their altered functionality with age, here we investigate T cell metabolism and its association with longevity and functionality.

View Article and Find Full Text PDF
Article Synopsis
  • * The patient exhibited significant health issues, including developmental delays, microcephaly, and epilepsy, with his fibroblasts demonstrating biochemical defects in mitochondrial complex I.
  • * Restoration experiments showed that adding healthy NDUFA8 gene material improved complex I function, highlighting the critical role of NDUFA8 in mitochondrial disease, a condition previously unconnected to this gene.
View Article and Find Full Text PDF

Mitochondrial complex I harbors 7 mitochondrial and 38 nuclear-encoded subunits. Its biogenesis requires the assembly and integration of distinct intermediate modules, mediated by numerous assembly factors. The mitochondrial complex I intermediate assembly (MCIA) complex, containing assembly factors NDUFAF1, ECSIT, ACAD9, and TMEM126B, is required for building the intermediate ND2-module.

View Article and Find Full Text PDF