The etiology of idiopathic Parkinson's disease (idPD) remains enigmatic despite recent successes in identification of genes (PARKs) that underlie familial PD. To find new keys to this incurable neurodegenerative disorder we focused on the poorly understood PARK14 disease locus (Pla2g6 gene) and the store-operated Ca(2+) signalling pathway. Analysis of the cells from idPD patients reveals a significant deficiency in store-operated PLA2g6-dependent Ca(2+) signalling, which we can mimic in a novel B6.
View Article and Find Full Text PDFThe role of protein kinase C (PKC) in Ca(2+) release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) of vascular smooth muscle cells (SMCs) is not well understood. Caffeine was used to activate RyRs and the intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in both freshly isolated and cultured mouse aortic SMCs (ASMCs). Pre-activation of PKC with 1,2-dioctanoyl-sn-glycerol (DOG) prevented caffeine-induced [Ca(2+)](i) transients.
View Article and Find Full Text PDFEctopic expression of caveolin-1 in HEK293 cells enhances FA sequestration in membranes as measured by a pH-sensitive fluorescent dye (1). We hypothesized that sequestration of FA is due to the enrichment of caveolin in the cytosolic leaflet and its ability to facilitate the formation of lipid rafts to buffer high FA levels. Here we show that ec-topic expression of caveolin-3 also results in enhanced FA sequestration.
View Article and Find Full Text PDFThe interaction between CD40 and its ligand (CD40L) has been implicated in the pathogenesis of atherosclerosis and is recognized as a central event in the development of immuno-inflammatory processes. Our previous studies have shown that the CD40-CD40L interaction modulates platelet, neutrophil, and endothelial reactive oxygen species (ROS) generation. Hypoxia, known to be associated with tissue ischemia and inflammation, also influences the ROS production and changes the cellular redox state.
View Article and Find Full Text PDFReactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER).
View Article and Find Full Text PDFObesity and type 2 diabetes are associated with chronic inflammation. Adiponectin is an adipocyte-derived hormone with antidiabetic and antiinflammatory actions. Here, we demonstrate what we believe to be a previously undocumented activity of adiponectin, facilitating the uptake of early apoptotic cells by macrophages, an essential feature of immune system function.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2005
We previously reported that induction of acute experimental esophagitis by repeated perfusion of HCl may affect release of intracellular Ca(2+) stores. We therefore measured cytosolic Ca(2+) in response to a maximally effective dose of ACh in fura 2-AM-loaded lower esophageal sphincter (LES) circular muscle cells and examined the contribution of H(2)O(2) to the reduction in Ca(2+) signal. In normal cells, the ACh-induced Ca(2+) increase was the same in normal-Ca(2+) and Ca(2+)-free medium and was abolished by the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C inhibitor U-73122, confirming that the initial ACh-induced contraction depends on Ca(2+) release from intracellular stores through production of inositol trisphosphate.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2004
Ulcerative colitis (UC) affects colonic motor function, but the mechanism responsible for this motor dysfunction is not well understood. We have shown that neurokinin A (NKA) may be an endogenous neurotransmitter mediating contraction of human sigmoid colonic circular muscle (HSCCM). To elucidate factors responsible for UC motor dysfunction, we examined the role of hydrogen peroxide (H(2)O(2)) in the decrease of NKA-induced response of HSCCM.
View Article and Find Full Text PDF